首页 > 教案大全 > 政治教案 正文
植树问题的教案精选10篇教学设计模板

2023-10-02 16:51:57 21好文网 政治教案

植树问题的教案

  植树问题的教案(精选10篇)

  作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的植树问题的教案(精选10篇),仅供参考,大家一起来看看吧。

  植树问题的教案1

  教学内容

  人教版义务教育课程标准实验教材四年级(下册)第117---118页例1

  教学目标

  1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学过程

  1、课前谈话:

  今天来这里上课,有什么不同的感觉?

  老师挺高兴的,这么多人,正好做一个公益宣传,请看--

  春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!

  一、创设情境,出示问题(2分钟)

  1、揭示课题(2分钟)

  师:你们觉得种树与数学有联系吗?

  生:间隔,米数等等问题。

  师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)

  2、出示问题

  课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。

  二、化繁为简,解决问题(26分钟)

  1、理解信息(2分钟)

  师:能看懂吗?告诉我们哪些信息?

  生:全长100米,每隔5米等等

  师:每隔5米是什么意思?

  生:就是两棵树之间的“间隔”;

  师:“间隔”这个词听过吗?能举几个例子吗?

  比如同学之间,手指之间......都可以看作是间隔。

  师:两端要种什么意思?

  生:头和尾各要种一棵。

  2、形成猜想(1分钟)

  师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!

  生1:200

  生2:201

  生3:202

  师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?

  生:验证。

  3、化繁为简(4分钟)

  师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。

  师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:35米

  师:才种了35米,一共要种多少米?

  生:1000米。

  师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?

  生:太累了,太麻烦了,太浪费时间了。

  师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?

  生:想

  师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)

  3、举例验证(5分钟)

  师:比如:1000米的路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。(课件出示:100米--

  师:你认为取多少长的路,画图种树,比较好验证呢。

  生:5米,10米,15米,20米,25米。

  师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)

  师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。

  4、反馈交流(如何操作还是一个问题)(5分钟)

  请一个小组把自己的研究成果展示在黑板上。

  师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。

  师生互动

  师:这空在这里是怎么回事?

  生:间隔5米;

  师:为什么是空了4个间隔?

  生:20米里正好有4个5米;

  师:怎么算出来的?

  生:20除以5等于4

  师:4个间隔数,空了4次

  师:这样种(板书:两端种),可以吗?)

  5、揭示规律(0.5分)

  师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)

  6、解决问题(3分钟)

  师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)

  师:(指着猜想答案)当时你是怎么猜想到200棵的。

  师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!

  7、巩固练习(6分)

  (1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远

  (2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  三、再度猜想,打通联系(10)

  1、过渡设疑

  2、形成猜想

  3、验证猜想

  4、得出结论

  5、打通联系

  四、拓展选择,辨别类型(3分钟)

  师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。

  (1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?

  1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)

  (2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?

  1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)

  (3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?

  1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)

  五、丰富背景,遗留问题。(1.5分钟)

  师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!

  植树问题的教案2

  教学内容

  义务教育课程标准实验科书(人教版)四年级下册第117--118页例题及相关练习。

  教学目标

  1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2、通过小组合作、交流,使学生发现并理解段数与棵树之间的规律,并利用规律解决一些实际问题。

  能力目标

  1、让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的能力。

  2、渗透数形结合的思想,培养学生借助实物,图形解决问题的意识。

  情感目标

  培养学生的分析意识,养成良好的交流习惯,感觉日常生活中处处有数学,体验学习的成功喜悦。

  教学重点

  引导学生发现植树与间隔数的关系。

  教学重点

  理解间隔与发现植树棵数的规律并运用规律解决问题。

  教学准备

  课件、学生用尺子、纸等。

  教学过程

  一、导入新课

  1、讲故事:(略)这个故事告诉我们:我们在说话、做事情时不能信口开河,不加思索来完成。

  2、揭示课题:

  明天就是“六一”儿童节,我们的节日有很多,同学们你们知道吗?3月12日是什么节?(植树节)其实,“植树”这件事还很有数学上的学问,今天我们就来研究“植树问题”(板书课题)

  二、新授。

  1、出示准备题:

  同学们在全长100米的小路去植树,每隔5米分为一段,一共可以分成多少段?

  100÷5=20(段)

  2、出示例题

  同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  (1)读题分析理解:“一边植树,两端要栽”的意义。

  可能许多同学列成:100÷5=20(棵)

  (2)学生试做。

  让学生讨论。

  3、感知间隔的含义

  请你们伸出右手,张开,数一数,5个手指间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间的有几个间隔?4个间隔是在几个手指之间?

  4、学生依次画图,课件依次演示画图过程的算法。

  段数棵数

  12

  23

  34

  56

  通过上面的分析,你发现了什么?

  棵数=段数+1

  或:段数=棵数-1

  5、完成例题。A:先要求出段数:100÷5=20(段)

  B:再次求出棵数:20+1=21(棵)

  6、再次感知,找到规律

  课件上做习题栽了8棵树,有()个间隔。(两端都要栽)

  有20个间隔,栽了()棵树(两端都要栽)

  三、尝试练习,做一做

  课件:1、园林工人沿路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  2、做书上的练习P122(练习二十)。T1、T2写在书上。

  四、巩固加深,拓展。

  1、打开书P117读书,思考。

  2、你在这一节课有什么遗憾?

  3、你在这节课中有什么收获?

  4、联系生活举例,加深理解。

  五、总结延伸

  植树问题还有许多学问,今天我们只是解决了两端都栽,如果两端都不栽,封闭图形(如圆形花坛)栽树又怎样计算等待下一节课再去研究。

  板书设计:

  段数棵数学生练习板演

  12

  23

  34

  45

  规律:棵数=段数+1

  或:段数=棵数-1

  植树问题的教案3

  学情分析

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于整体学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中应对教材进行适当的整合,并充分利用原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标

  1.认识不封闭曲线路上间隔排列中的简单规律。

  2.会解决问题中“两端都栽”情形的植树的实际问题。

  教学重难点

  重点:间隔排列中的简单规律

  难点:两端栽树棵数与间隔数之间的关系。

  教学过程

  一、口算:(白板出示)

  48÷6=? 13×3+1=? 83+42+17=? 32÷8+1=? (13-1)÷2=

  100÷5+1=? (73-1)÷8=? 12×4=? 1000÷10=? 35÷7+1=

  二、谈话导入

  师:同学们你们知道每年的植树节是几月几日吗?

  生:3月12日

  师:那你们植过树吗?

  生:没有 有

  师:那今天老师就来带领大家一起来研究数学上的 “植树问题”吧!

  出示课题(ppt):植树问题

  准备:

  伸出左手 五指张开 每相邻两个手指之间有一个缝隙,这个缝隙也称做间隔。

  5—4 也称做间隔数是4 ; 4-3 3 ;? 3—2 2 ;?? 2—1? 1 ;

  ?? 那大家植树时是不是这样植的?每相邻两棵树之间有一定的距离,也称做间距。

  三、探究新知

  下面让我们一起来研究,出示课件例题1

  (1)理解题意

  师:认真读题,你认为哪些词语最关键?

  生:全长100米 ?? ? 一边

  每隔五米 间隔 ?两端都要栽

  问题:一共需要几棵树苗?棵数

  (这些同学审题真仔细)

  师:那什么叫做每隔五米?两端都要栽?

  生:每相邻两棵树之间的间隔距离是5米?

  小路的最开始和末尾各栽一棵。

  师:同学们说的可真好,那请大家观看课件,跟着老师一起通过ppt再次深刻理解题意,认真看,小声跟着说……好!那你认为一共应该栽多少棵小树呢?

  师:100米太长了,我们可以用简单的数来试试。20米(师把100改成20),师在黑板上画出线段图,让学生清楚看出需要5棵小树苗。师:怎样写算式呢?20÷5=4() 4+1=5()

  (老师重点强调单位名称和答)

  师:把20米换成30米、35米呢?(学生在练习本上计算,后同桌对答案)

  师:那么大家来看黑板上,间隔数和棵树之间有什么联系?

  生:棵数=间隔数+1? 多找几个同学回答

  师:出示课件 一起读。

  师生共同回头看例1,学生在练习本上计算。

  师出示课件ppt例1的计算过程

  100÷5=20(个)

  20+1=21(棵)

  答:一共需要21棵小树苗。

  (表扬—你真了不起,写的跟答案一模一样,点赞!)

  四、巩固练习(ppt呈现)

  1、5路公交车线路全长12千米,相邻两站之间的路程都是1千米,一共设有多少个车站?

  2、把“1千米”改成“2千米”

  3、在一条长20米的小路一侧,每隔4米放一盆植物(两端都放),一共需要多少盆植物?

  4、两侧都放呢?

  5、大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端都不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树

  五、思考题

  学校的大钟8时敲响8下,14秒敲完。11时敲响11下,敲完需要多长时间?

  六、谈收获

  通过今天的学习,老师很佩服你们的专注力,你们真了不起!那么你的收获是什么呢?

  (师生共同本课内容,下课。)

  植树问题的教案4

  教学内容

  义务教育课程标准实验教科书(人教版)四年级下册数学广角。

  教学目标

  1.经历将实际问题抽象成数学模型的过程,掌握种树棵数与间隔数之间的关系。

  2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

  3.感悟构建数学模型是解决实际问题的重要方法之一。

  教学重点

  让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  教学过程

  一、创设情景,提出问题

  情境:同学们参加植树活动,要根据植树要求“动脑筋,领树苗”。

  问题:有一条12米长的小路,一小组要在小路的一边植树,要求每隔2米栽一棵(两端都栽),该领多少棵树苗呢? (大屏幕出示)

  二、探索规律,建立模型

  1.实践操作,得出结论

  (1)初步感知,大胆猜想

  你们认为一小组的同学该领多少棵树苗呢?

  (2)动手操作,验证猜想

  用画图法或摆一摆的方法“栽一栽”。

  2.尝试不同的栽法,积累研究素材

  师:刚才我们是每隔2米栽一棵树,发现出现了6个间隔,可以栽7棵树。你们还有不同的栽法吗?

  (1) 激发兴趣谈栽法

  (2) 自由选择试栽法

  (3) 交流汇报作记录

  3.观察分析,发现规律

  师:现在请大家认真观察一下老师记录的这些数据,你会不会有所发现呢?先独立思考,再把你们思考的结果互相说一说。

  (1)认真观察,独立思考

  (2)小组交流,集思广益

  (3)班级汇报,总结规律

  三、运用规律,解决问题

  1.运用规律,解答117页的例1。

  同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  2.运用规律,解答118页的“做一做”。

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  3.运用规律,解答119页的“做一做”的第1题。

  在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?

  小结:安装路灯问题也是一种植树问题。

  植树问题的教案5

  教学目标:

  (一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

  (二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

  (三)在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用

  教学重点、难点:

  让学生掌握解决封闭图形植树问题的思想方法。

  教学难点:

  探索发现封闭图形情况下棵树与间隔数之间的关系。

  教学过程:

  (一)创设情景,引入问题

  1.问题一:(出示图片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?

  反馈:谁来告诉大家要摆多少盆花?

  预设:生1:91+1=10盆;生2:91=9盆;生3:91-1=8盆

  师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?

  小结:同学们用以前学习的植树问题帮我解决了这个数学问题。

  2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?

  [通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。]

  生1:40盆,

  生2:36盆,

  师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?

  (让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。)

  小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?

  (二)多元表征,感知模型

  1.出示学习建议:

  (1)你可以自己最喜欢的方法来说明你的答案是怎么来的

  (2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。并写出算式。(花盆可以用符号表示)

  (3)先独立思考,再在小组中说一说你的方法。

  [把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。]

  2.反馈:你是怎么想的?(先把学生的四种方法都出来,再讲评每一种方法)

  预设:

  生1:102=20,82=16 20+16=36;

  生2:94=36;

  生3、84+4=36;

  生4:104-4=36;

  师:你能解释一下是怎么想的吗?(听完学生说自己的思路如果他没画图的,问一下用同样的算法,但是画图的)

  [通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。]

  回顾:刚才我们这四种方法解决了问题.(课件演示)

  [通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。]

  小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

  (三)探索规律,有效建模

  1.抛出问题:除了给桂花树正方形的台摆鲜花,在学校的其他的还有其他的一些地方也要摆一些鲜花,

  每边6盆,一共要多少盆? 每边4盆,一共要多少盆?

  2.反馈:你是怎么算的?(结合图说明算式的意思)

  预设:

  生1:63=18 46=24

  生2:63-3=15 46-6=18

  生3:63+3=15 46+6=30

  3.讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

  小结:我们从正方形,三角形,六边形等等作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)边数=盆数

  4.

  展开:圆坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

  学生自主探索。

  交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?(学生在电脑上进行多媒体演示并讲述想法)

  你还有什么新的发现?(引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

  小结:花盆数=间隔数

  [让学生在电脑上直观操作,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。]

  5.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

  (1)学生探索

  (2)反馈

  (3)演示:将这些图形拉伸为圆,并转化为线段。

  小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

  [通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。]

  (四)拓展提升,实践应用

  1.学校为了美化校园环境,开展了摆花设计方案征集。有以下三种,请选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?你还能设计出其他方案吗?

  2.小结

  通过今天这节课的学习,你有什么收获?

  植树问题的教案6

  教学内容

  人教版实验教材四下P117-P118页《植树问题》例1、例2

  教学目标

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

  教学难点

  应用植树问题的模型灵活解决一些相关的实际问题。

  设计理念

  新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

  本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

  教学过程

  一、新课导入

  1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

  板书课题:植树问题

  二、引导探究

  1、创设情境,理解概念

  (1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

  (2)理解题意。

  a.读题,从题中你了解到了哪些数学信息?有什么问题?

  b.理解”间隔“的意思?

  C、理解三种种植情况

  (两端都种、一端种、两端不种)

  2、主动探索,发现规律

  (1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整

  植树方案

  总长(米)

  间隔(米)

  间隔数 (个)

  棵数(棵)

  种植情况示意图

  (2)学生反馈

  (3)组织讨论:你发现什么规律?

  两端都种时,棵数=间隔数+1

  一端种是时,棵数=间隔数

  两端不种时,棵数=间隔数-1

  3、应用规律,解决问题

  (1)出示例2:

  (2)读题后思考,有什么地方需要提醒同学值得注意的。

  (3)学生独立解题、反馈

  三、回归生活,变式练习

  1、封闭图形相当于一端种

  (1)出示P122练习二十第4题

  圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (2)讨论:封闭图形相当于植树问题中的哪个类型?

  (3)学生独立解题,反馈。

  2、同时出示两道习题:

  (1)锯木头问题(两端都不种)

  一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

  (2)排列问题(两端都种)

  四、欣赏生活中类似于植树问题的事件

  生活中的类似于植树问题的――――欣赏

  植树问题的教案7

  教学内容

  人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。

  教学目标

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200+2=202(棵)

  方法三:1000÷5=200(棵)200+1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的'答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去......

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200+1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数-1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4-1=3(次)

  问:为什么要-1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  植树问题的教案8

  教学内容:

  义务教育课程标准实验教材四年级下册《植树问题》,117页例1。

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:

  多媒体。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有很多类似的问题:例如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔五米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有十米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你可以找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

  植树问题的教案9

  学习目标:

  1.让学生学会在摆一摆、画一画、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2.学会在小组合作、交流中,进一步理解间隔数与棵数之间规律,并解决简单的植树问题。

  3. 在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  学习过程:

  一、自主探究

  1.从图中你都知道了什么?

  2.思考:你认为一共要栽多少棵树?

  3.出示表格

  总长 每两棵树之间的距离,即间隔(米) 两端都种

  间隔数 棵数

  我的发现

  可以独立完成,也可以小组合作完成。

  二、课堂达标

  1.算一算

  在全长2000米的街道一旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?

  2.想一想

  学校校园内一条小路的一旁从头到尾共有35棵树,每两棵树相距5米。这条小路共有多长?

  3.楼梯问题

  学校教学楼每层楼梯有24个台阶,老师从一楼开始一共走了72个台阶。老师走到了第几层?

  三、知识拓展

  广场上的大钟7时敲7下,12秒敲完,10时敲10下,需要几秒钟敲完?

  植树问题的教案10

  一、教材概述

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、使学生理解并掌握一个封闭图形的植树问题的规律。

  2、学会用不同的方法分析具体的数学问题。

  3、经历数学问题的探究过程,体验用不同的思路解决问题的方法。

  4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。

  三、学习者特征分析

  学生已经初步掌握关于一条线段的植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。

  四、教学策略选择与设计

  自主探索 合作交流总结规律

  五、教学环境及资源准备

  投影仪,每小组一副围棋。

  六、教学过程

  教学过程教师活动预设学生行为设计意图及资源准备

  一、创设情境教师投影出示教材第120页例3情境图。

  教师:图上两位小朋友在干什么?(下围棋)

  你对围棋有哪些了解?

  师:在这小小的围棋盘下可有不少数学问题呢!

  板书课题:

  让学生畅所欲言。吸引学生的注意力,激发学生的学习兴趣。

  二、探究新知

  (1)教师投影出示围棋盘。

  师:在围棋盘上一个点可以放一个子。

  (2)出示例3。

  围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?

  师:同学们算得都正确。还有其他的方法吗?

  师:你发现了什么?

  学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。

  (1)学生读题,理解题意。

  (2)动手在围棋盘上摆一摆,数一数,小组合作探究。

  (3)学生汇报。

  通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。

  三、反馈应用

  (1)教材第121页做一做第1题。

  教师投影出示情境画面,出示第1题。

  (2)教材第121页“做一做”第2题。

  ①讨论:可以怎么摆放?

  ②最少需要多少盆花?

  (3)教材第121页“做一做”第3题。学生读题,理解题意。

  学生汇报。

  学生在小组中合作完成,然后教师指名汇报,全班集体订正。

  四、全课小结通过今天的学习活动,你有什么收获?

  板书设计: 植树问题(二)

  a.19×2+17×2=72(个)

  (19+17)×2=72(个)

  b.18×4=72(个)

  c.17×4+4=72(个)

  封闭图形:植树棵数=间隔数

【植树问题的教案】相关文章:

植树问问题的教案02-21

小学植树问题优秀教案02-21

植树问题教案(精选6篇)02-21

植树问题优秀教案(精选5篇)02-22

直线植树问题试讲教案(精选5篇)02-21

植树问题评课稿02-05

植树问题的教学设计(精选5篇)12-27

关于植树歌教案02-22

植树问题第一课时教案(精选6篇)02-21

最新《植树问题》说课稿(精选5篇)12-01