首页 > 教案大全 > 数学教案 正文
比的应用教学设计通用10篇电子版免费下载

2023-10-02 16:50:51 21好文网 数学教案

比的应用教学设计(通用10篇)

  作为一名教学工作者,常常需要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计要怎么写呢?下面是小编精心整理的比的应用教学设计,欢迎阅读,希望大家能够喜欢。

  比的应用教学设计 篇1

  教学内容:

  北师大版小学数学六年级上册55—56页

  教材分析:

  这部分内容是在学生已经学过了比与分数、与除法的关系,已掌握了简单的分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例。掌握了按比例分配的的解题方法,体会这类问题在生活中的广泛应用,同时也为以后学习“比例”、“比例尺”奠定了基础。

  学情分析:

  对于按比例分配的应用题,学生在以往的生活中曾经遇到过,甚至解决过。有过一定的体验与感悟,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过本节课的学习,将学生无序的思维有序化、数学化、系统化。

  教学目标:

  能运用比的意义解决按照一定的比进行实际分配的实际问题,进一步体会比的意义,提高解决问题的能力。

  教学重点:

  理解按一定比例来分配一个数量的意义。

  教学难点:

  根据题中所给的比,掌握各部分量占总量的几分之几,能熟练地用乘法求各部分量。

  教具学具:

  多媒体课件

  教学过程:

  一、创设情境,激发兴趣

  1、小调查:奶茶中,奶与茶的比是3:7,从中你可以获得什么信息?

  2、3月12日是植树节,学校把种植42棵小树苗的任务分配给六年级人数相等的三个班,怎样分配才合理?(平均分配)

  3、出示教材主题图,获取信息:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?说一说你的分法。(先独立想一想,然后在小组内交流,再全班交流)

  学生提出两种分配方案:一种每班分橘子的一半;

  另一种按大班和小班人数的比来分配

  通过全班交流达成共识,按大班和小班人数的比来分配比较合理。

  4、出示课题:这就是今天我们要学习的“比的应用”

  设计意图:提供现实生活情境,使学生体会到数学与实际生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。

  二、分析探究,初步感知

  1、出示题目:老师这有一筐橘子,把这筐橘子按3:2分给幼儿园大班和小班应该怎样分?(课件显示)

  (学生独立思考一会儿,有的同学想到要实际分一分)

  师:这样吧,我们用小棒代替橘子,小组分一分

  (老师给每组相同数量的小棒,但没有告诉学生小棒的数量,学生按3:2分小棒,教师巡视)

  师:分好了吗?说说你们是怎样分的?

  生1:先给大班3根,小班2根;然后再给大班3根,小班2根,就这样一共分了8次分完。由此可知这堆小棒有40根,最后大班分到24根,小班分到16根。

  生2:我们前两次分得跟他们一样,第三次我们发现剩的太多,我们就给大班分6根,小班分4根,就这样又分了两次分完,结果也是大班分到24根,小班分到16根。

  生3:我们的分法和他们的不一样,我们按3:2来分,因为小棒有一大堆,我们就想给大班分30根,小班分20根,后来发现不够,就给大班15根,小班10根,剩下的再给大班9根,小班6根,正好分完。

  师:虽然分得结果一样,但是你们的'方法却不尽相同,可见同学们是用心、用脑去想了。事实上,很多科研成果也是通过科学家们的无数次试验得来的,希望你们把这种好的学习方法保持下去。

  设计意图:给学生充分操作的空间,每个小组都利用小棒来摆一摆,在摆的过程中学生产生了不同的分法,有的小组按部就班一直按3根、2根分;有的小组按3根、2根分了后,及时做了调整按6根、4根分;有的小组“大胆”地按30根、20根分,不够了又再做调整。不同的分法都代表了学生对比的理解和数感,也为进一步寻求这类问题的方法积累了经验。

  2、师:在这次分小棒的活动中,你们有什么发现?说说你们的感受。

  生1:我觉得不管怎么分我们都要按3:2的比来分,也就是我们每次分的小棒的个数比是3:2。

  生2:我发现6:4,30:20,15:10,9:6结果都是3:2。

  设计意图:这一过程要给学生提供充分的体验时间,在实际操作中学生会不断调整一次分配的数量,不断产生新的解题策略,理解按一定的比例来分配的意义。

  生:我觉得按3:2的比分和我们以前学过的平均分给两个人不一样,因为平均分后两个人每人分得的个数相同,而按3:2的比分两人分得的个数不同。

  师:实际上以前我们学过的平均分就是按照1:1进行分配的。

  设计意图:分完后引导学生进行反思,鼓励学生说出在分的过程中的发现和自己的体会。有的学生发现无论怎么分都是按3:2分,这正是理解这类问题的关键;有的学生发现了6:4,30:20,15:10,9:6结果都是3:2,这不仅巩固了化简比的内容,同时为以后学习正比例积累了经验;有的学生联想到了以前学过的平均分,在教师的引导下将前后知识联系起来。

  3、师:如果现在有140个橘子又该怎么分?把你的想法在四人小组内说一说。

  生1:我觉得现在橘子数目大了,再像刚才那样一次一次的分太麻烦,实际上按3:2来分的意思就是大班3份,小班2份,还是先算出来再分比较好。

  生2:……

  设计意图:注意鼓励学生探索解决问题的策略,在解决140个橘子按3:2又该怎么分的问题时,教师鼓励学生积极探索,想出不同的解决问题的策略。

  4、比较不同的方法,说出你的解题思路,并找找他们的共同点(课件展示)

  方法一:列表法

  方法二:画图

  3+2=5 140÷5=28(根) 28×3=84(根)28×2=56(根)

  方法三:列式

  3+2=5 140×0。4=56(根) 140×0。6=84(根)

  小结:在解决实际问题时,同学们要认真分析数量关系,可以选用自己喜欢的方法来解答。

  设计意图:有上面小组合作的经验与发现,这次可以用操作、画图、列式等不同的方法分,从实践中发现规律,理解部分量与总量之间的关系。会解答这类应用题。

  三、运用新知,学以致用

  1、独立完成教材56页“试一试”,集中反馈。

  2、独立完成教材56页“练一练”2题。,找学生板眼,集中反馈,讲解不同的解题思路。

  3、用48厘米的铁丝围成一个长方形,这个长方形长和宽的比是5∶3,这个长方形长和宽各是多少?

  设计意图:培养学生独立思考问题、解决问题的能力。互帮互助的作用,鼓励学生用数学语言表述自己的解题思路。在这一过程中,便于发现问题并及时解决。

  四、归纳拓展,巩固新知

  教材56页故学故事

  五、总结全课

  1、学生看书回顾本节学习内容

  2、对于这节课的学习,你还有什么疑问?

  3、说说这节课你的收获。

  六、作业:按不同的比例把糖和水配成糖水,品尝之后,记录好你最喜欢的糖水比例。

  设计意图:通过品尝不同比例的糖水加深印象,明白按比例分配应用题在实际生活中的用途是很广泛的,从而感受到生活中处处有数学,并树立学好数学知识的自信心。

  比的应用教学设计 篇2

  课题:

  比的应用

  教学内容:

  义务教育课程标准小学数学六年级上册第三单元《比的应用》

  教学目标:

  1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

  3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独

  立思考、自觉检验的好习惯,增强学生学好数学的信心。

  教学重点:

  掌握按比分配应用题的结构特点和解题思路。

  教学难点:

  正确分析,灵活解决按比分配的实际问题。

  教学准备:

  教学课件卡片

  教学过程:

  一、复习导入

  1、复习求一个数的几分之几是多少的实际问题。

  2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。

  二、讲授新课

  1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。

  2、利用课件出示例2。

  (1)学生读题,弄清题意。

  (2)引导学生找出题中所提供的数学信息。

  (3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。

  (4)引导学生分析题中的`数量关系,使学生理解按比分配问题的解题思路。

  (5)小组讨论解题方法,然后进行汇报,并集体订正。

  (6)引导学生用不同的方法解决问题,重点理解按比分配的方法。

  (7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。

  3、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

  三、巩固练习

  1、解决课前分卡片时所产生的问题。

  2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题

  的异同,并用自己喜欢的方法解决,后集体订正。

  3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,

  鼓励学生用不同的方法独立解决,并引导学生自行检验。

  四、拓展延伸

  利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

  五、课堂总结

  学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

  比的应用教学设计 篇3

  教学内容

  课本第52页~53页的例2、例3,完成“做一做”的题目和练习十三的第1~4题。

  教学目的:

  使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。

  教学重、难点

  按比例分配的实际应用。

  教学过程:

  一、导入

  1、情境导入

  老师今天向学校图书室借来50本图书准备分给我们班的男、女同学,请同学们说说该怎样分呢?(让学生自由发言,有可能得出男、女同学各分25本,实际上就是我们学过的平均分)

  2、复习铺垫:我们班的男生30人、女生20人,人数不同,你说这样平均分合理吗?该怎样分才合理呢?今天我们就来研究象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。(板书:比的应用)

  二、新授:

  1、教学例1(自己改编):六年级向学校图书室借来图书50本,按3:2分配给男、女学生,男、女生各分得多少本?

  对照课本例2的.解题过程,让学生先独立解答,然后由各小组讨论,并提出问题来共同解答。

  老师引导:

  (1)题目中要分配什么?是按什么进行分配的?(分配50本图书,男女生按3:2进行分配。)

  (2)男女生分得本数的比是3:2,是什么意思?(就是说在50本图书中,男女可分3份,女生可分2份,一共是5份,男生占总数的5分之3,女生占总数的5分之2。)

  (3)你能求出两种作物各播种多少公顷吗?怎样求?

  引导学生进行自己解题。

  2、引导学生再次阅读例2的解题过程,再次质疑

  3、练习:做一做第1题。订正时说说解题时先求什么?再求什么?

  4、教学例3。

  (1)出示例3:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

  (2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

  (3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

  (4)怎样分别算出各班应种的棵数?引导学生解答。并且把书上的例3做完整。

  (5)学生试做“做一做”中的第2题。

  先让学生说一说奶糖、水果糖、酥糖和占500千克什锦糖的几分之几?

  三、巩固练习。

  1、做一做第3题。

  2、练习十三的第1、3题。

  四、作业。练习十三第2、4题。

  比的应用教学设计 篇4

  【教材分析】

  《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、 “比例尺”的知识奠定基础。

  教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

  【学生分析】

  学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

  比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

  【教学目标】

  1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

  让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

  3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

  【教具准备】

  课前准备:学生查找有关事物各组成部分比的资料。

  课上准备:小红旗。

  【教学重点】

  理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

  【教学难点

  理解按比分配的实际意义,沟通比与分数之间的联系。

  【教学过程】

  一、情境引入

  老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)

  经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?(不合理,因为每个人分到的就不一样多了。)

  怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。(按人数比30:20=3:2进行分配。)

  3、3:2表示什么意思?

  [设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。

  二、问题解决活动1:合作研究怎样按3:2这个“比”来分配

  为了研究方便,老师给大家提供了一些小旗代替橘子。

  (一)合作研究

  1、合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)

  大班 小班

  第一次

  第二次

  第三次

  第四次

  第五次

  大班分得()面小旗

  小班分得()面小旗

  2、学生合作研究

  3、教师组织反馈交流

  老师在巡视的过程中,收集约三种不同的分法,分步展示在黑板上。

  四人一组交流讨论要求

  (1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?

  (2)观察、比较这几种分法,你能发现什么?

  插问:你觉得分一次至少需要多少面小旗?为什么?

  也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?

  学生可能出现的方法预设:

  分法1:每次分给大班3面,分给小班2面。

  表扬:认真有耐心,十二次。

  分法2:根据比的`基本性质分,分的次数明显减少。

  表扬:很会动脑筋,在分的过程中及时进行了调整。

  分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。

  表扬:很会联系实际情况,这种分法在实际生活中非常实用。

  [设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力

  (二)验证

  1、问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?

  大班 小班

  分得小旗的总面数

  人数

  平均每人分到小旗的面数

  30 :20 = 3 :2 = 36 :24

  2、师生一起小结:

  (1)平均每人分到的小旗同样多吗?

  (2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?

  (3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?

  [设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。

  (三)当我们知道总数的情况下的按比分配

  1、问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?

  2、四人一组交流,说说你想到的方法:

  方法1:按比逐次分配。

  方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小旗。

  方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数

  3、小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?

  三、巩固练习

  同学们表现得太出色了,能再帮老师一个忙好吗?好啊

  我家有一块近似长方形的菜地,面积大约是984平方米,我想按3:5的比例种茄子和西红柿,茄子和西红柿各种多少平方米?

  四、总结

  今天的学习,你有哪些收获和感受?

  1、通过这节课的学习你对比有了哪些新的认识?

  2、把一些事物按一定的比分的时候,可以用哪些策略?

  3、你在生活中还能找到比的应用的例子吗?

  比的应用教学设计 篇5

  设计思路:

  本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。

  教学内容:

  六年级上册比的应用

  教学目标

  1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。

  2、能正确解答按比例分配问题。

  3、培养解决问题的能力,促进探索精神的养成。

  教学重点:

  掌握解答按比例分配应用题的步骤。

  教学难点:

  掌握解题的关键。

  教学过程:

  一、创设情境,感受价值

  1、师:同学们,大家平时放过东西吗?

  2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)

  注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?

  3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。

  注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。

  二、探究教学

  1、探究例题

  呈现例题,根据学生的建议,共同完成例1

  (1)植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵?

  (2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?

  师:请同学们独立思考,独立完成(教师巡视、指导)

  (3)展示结果

  根据学生的回答板书解题方法

  第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)

  第二种:2+3=5

  60×3/5=36(棵) 60×2/5=24(棵)

  注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。

  2、揭示课题

  师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。

  3、思考:如何检验答案是否正确呢?

  讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?

  指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的`总数和分配的比,从而突出重点,突破难点。

  三、巩固练习教材做一做

  四、总结

  通过这节课的学习,你有什么收获?

  教学反思:

  1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。

  2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。

  比的应用教学设计 篇6

  教学内容:

  北师大版六年级数学上册第55页、第56页。

  教学目标:

  知识与技能:

  能运用比的意义解决按照一定的比进行分配的实际问题。

  过程与方法:

  讲练结合,小组合作,三疑三探。

  情感、态度、价值观:

  进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的思维品质。

  教学重点:

  理解和掌握按一定的比进行分配的意义,并进行实际应用。

  教学难点:

  把比熟练地转化成分数,将分数知识横向迁移。

  教学准备:

  多媒体课件。

  教学过程:

  一、创设情境,设疑自探

  1、课件出示教材中的情境图,大班30人,小班20人。

  思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的人数来分比较合理。

  2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。

  (没有告诉学生小棒的数目。)学生分好后,交流分法。

  3、小结。

  二、解疑合探,知识迁移

  1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。

  2、交流方法,展示。学生可能出现的方法:

  ⑴、借助表格分。

  ⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。

  3、引导学生小结方法⑶的思路。

  ⑴计算分配的总份数。

  ⑵计算各部分占总量的几分之几。

  ⑶利用乘法的意义解题。

  4、你喜欢哪种方法,请说明理由。

  5、回忆学过的.“平均分配”,可以看成几比几?

  三、巩固练习,深化认识

  1、小清要调制2200克巧克力奶,巧克力和奶的比是2:9。需要巧克力多少克?

  2、3月12日是植树节,学校把种植60棵小树苗的任务分配给六年(3)班和二年(3)班,两班人数相等。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?

  3、完成教材第56页练一练第3题合理搭配早餐。

  四、总结评价,课后延伸。

  1、总结。

  2、布置作业。

  板书设计:比的应用

  大班30人,小班20人。

  思考:把这筐橘子分给大班和小班,怎么分合理?

  3、先求出一共分成几份,再求出大班和小班分的个数分

  (以上方法可借助课件演示帮助学生理解。)

  比的应用教学设计 篇7

  教学目标:

  1、能正确的判断应用题中涉及到的量成什么比例关系。

  2、能正确的用比例的知识解答比较简单的应用题。

  3、培养学生的分析、判断和推理能力。

  教学重点:

  正确的判断应用题中的数量关系之间存在着什么样的比例关系。

  教训难点:

  能根据正比例、反比例的意义列出含有未知数的等式。

  教学过程:

  一、实际操作,引入新知识。

  (1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

  (3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (4)你是怎样算的,可以列出式子吗?

  二、教学例1

  一辆汽车2小时行驶140千米,照这样的.速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

  1、指导分析,理解题意。

  2、学生自己想办法解答。

  3、师生探究用比例的知识解答。

  A、这道题中涉及到的量有哪些?

  B、哪种量一定(不变)?从哪里知道的?

  C、路程和时间成什么比例关系?判断的依据是什么?

  D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

  2小时和140千米相对应,5小时和X千米相对

  应,即可以列出比例:140 :2=X :5

  E、学生列式并解答。

  F、说说怎样检验我们的计算结果呢?

  4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

  一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

  学生自己解答,老师及时收集和处理反馈信息。

  三、教学例2

  一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

  1、引导分析,理解题意,找到相关的量。

  2、准确判断它们成什么比例关系。

  3、学生解答,及时收集和处理反馈信息。

  比较例1、例2的异同。

  四、小结:

  用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

  比的应用教学设计 篇8

  一、教材分析

  本节《浮力的应用》是在学习了上节《浮力》,知道浮力的产生及其大小的基础上,进一步学习物体浮沉的条件,知道物体浮沉条件在实际生活中的应用,理解轮船、潜水艇、气球和飞艇是如何改变浮力或重力,来实现浮沉的,通过本节课的学习使学生体会物理就在我身边,初步学会用浮力知识解决生活中的实际问题。

  二、学情分析

  本节课学生已经掌握基础知识较扎实,已经学习了系统的力学基础知识,刚学过浮力产生的原因及阿基米德原理,有强烈的好奇心和求知欲望,知识面广,学习习惯较好,自学能力较强。本节课主要指导学生应用实验归纳总结本课的教学重点、难点,随着实验的总结、拓展,真正发挥了学生的正常思维潜能,激发了学生对自然科学的探究,搜集整理浮力在生产、生活中的应用,培养了学生实验操作能力和团结协作的精神。

  三、设计思路

  根据浮力知识的教学分解,本节教学的知识要点:一是物体的浮沉条件;二是浮沉条件的应用。知识本身的难度并不算大,但贯穿在从如何调节浮力与重力的大小关系去理解浮力的应用事例这个分析过程要求较高,是进行本节教学的关键,为此,本节教学的策略设计是:从观察、分析、比较物体的浮沉情况→认识物体的浮沉条件(受力条件和密度条件)→调节浮力与重力的大小关系→理解浮力的应用(轮船、潜水艇、气球和飞艇、选种诸方面的应用)。

  四、教学目标

  1.知识与技能

  知道物体的浮沉条件;

  知道浮力的应用

  2.过程与方法:

  通过观察、分析、了解轮船是怎样浮在水面的;

  通过收集、交流关于浮力应用的资料,了解浮力应用的社会价值。

  3.情感态度与价值观

  初步认识科学技术对社会发展的影响。

  初步建立应用科学知识的意识。

  五、教学重点:知道轮船、潜水艇、气球、飞艇的工作原理。

  六、教学难点:理解改变物体所受的重力与浮力的关系,能增大可利用的浮力。

  七、教学仪器:烧杯、水、体积相同的蜡块和铁块、两个铁罐子、沙子、潜水艇模型、热气球模型、多媒体课件。

  八、教学流程:

  (一)新课引入

  [演示]:1.出示铁块和蜡块让学生观察发现它们体积相等。

  2.将体积相同的铁块和蜡块同时浸没在水中后松手。

  [现象]:铁块沉入杯底而蜡块上浮最终浮在水面。

  [提问]:1.浸没在水中的铁块、蜡块(松手后)各受到什么力?

  (浮力、重力)

  2.铁块和蜡块受到的浮力相等吗?

  (相等。因为V排相等,根据阿基米德原理可知浮力相等。)

  3.既然铁块和蜡块受到的F浮相同,为什么松手后铁块沉底而蜡块上浮?

  液体中,物体的浮沉取决于什么呢?

  [讲解]:物体的浮沉条件:

  分析蜡块:松手后,浸没在水中的蜡块所受到的F浮>G蜡,所以蜡块上浮。当蜡块逐渐露出水面,V排减小,浮力减小,当F浮= G物时,蜡块最终漂浮在水面。即:F浮>G物上浮,最终漂浮。

  分析铁块:松手后,浸没在水中的铁块所受到的F浮<G铁,铁块下沉。到达容器底部后,铁块受到F浮、G铁和F支,三力平衡,静止在容器底,我们说铁块沉底。即:F浮<G物下沉,最终沉底。

  若一个物体浸没在水中,松手后F浮=G物,受力平衡,物体的运动状态不变,我们说物体悬浮在液体中。即:F浮=G物,最终悬浮。

  总结:通过上述分析,我们知道浸在液体中物体的浮沉取决于物体所受F浮与G物的关系。

  (二)进行新课

  1.讨论:

  (1)木材能漂浮在水面,其原因是什么?

  (2)把一根木头挖成空心,做成独木舟后,其重力怎么变化?它可载货物的多少怎么变化?重力变小,可以装载的货物变多。

  [指出]:从浮力的角度看,把物体做成空心的办法,增大了可利用的浮力,而且这种古老的“空心”办法,可以增大漂浮物体可利用的浮力。

  [质疑]:密度比水大的下沉的物体有没有办法让它上浮或漂浮呢?

  2.实验:

  两个外形相同的铁罐子,一个空心,一个装满沙;同时按入水中,松手后实心的下沉,空心的`上浮最终漂浮。

  [质疑]:(1)铁的密度大于水的密度,空心的铁罐子为什么能漂浮呢?可能是因为什么呢?

  (因为它是空心的,F浮>G物,所以能上浮,最终能漂浮。)

  (2)要想让实心的铁罐子也漂浮,可以怎么办呢?

  (把沙取出来,变成空心的。)

  (3)大家的想法是如何调节的铁罐子的浮沉的呢?

  (F浮不变,挖空使G物变小,当F浮>G物,铁罐子自然就浮起来了。)

  [指出]:上述实验告诉我们采用“空心”的办法,不仅可以增大漂浮物体可利用的浮力,还可以使下沉的物体变得上浮或漂浮。

  3.应用

  轮船

  (1)原理:采用把物体做成“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。

  (2)排水量:满载时,船排开的水的质量。

  即:排水量=m船+m货

  [质疑]:1.轮船从河水驶入海里,它的重力变不变?它受到的浮力变大、变小还是不变?(不变,始终漂浮)

  2.它排开的液体的质量变不变?(不变)

  3.它排开的液体的体积变不变?

  (变,ρ海水>ρ水,所以V排海水<V排水)

  4.它是沉下一些,还是浮起一些?(V排变小了,所以上浮一些)

  [强调]:同一条船在河里和海里时,所受浮力相同,但它排开的河水和海水的体积不同。因此,它的吃水深度不同。

  潜水艇

  [学生实验]:

  潜水艇能潜入水下航行,进行侦查和袭击,是一种很重要的军事舰艇。它是怎么工作的呢?我们用打吊瓶用的小塑料管来模拟潜水艇。请同学们利用和塑料管连接的细管给塑料管吹气或吸气。

  现象:吸气时,水逐渐进入管中,管子下沉;吹气时,管中的水被排出,管子上浮;

  [质疑]:(1)小塑料管浸没在水中所受F浮是否变化?

  (塑料管形变很小,V排基本不变,所以可以认为F浮不变)。

  (2)那它是怎样上浮或下沉的呢?

  (吹气时,水从管子中排出,重力变小,F浮>G物,所以上浮;吸气时,水进入管子,重力变大,F浮<G物,所以下沉)

  [讲解]:潜水艇两侧有水舱,当水舱中充水时,潜水艇加重,就逐渐潜入水中;当水舱充水使艇重等于同体积水重时,潜水艇就可悬浮在水中;当压缩空气使水舱中的水排出一部分时,潜水艇变轻,就可上浮了。

  潜水艇:

  原理:靠改变自身重力来实现在水中的浮沉。

  [强调]:潜水艇在浸没在水下不同深度所受浮力相同。

  气球和飞艇

  [演示]:“热气球”的实验。

  [质疑]:酒精燃烧后袋内空气密度怎样变化?

  原理:ρ气<ρ空气,使它受到的F浮>G物而升空。

  [讨论]:要使充了氦气、升到空中的气球落回地面,你们能想出什么办法?要使热气球落回地面,有什么办法?(放气或停止加热)

  其他应用

  密度计、盐水选种等。

  比的应用教学设计 篇9

  教学目标:

  知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。

  过程与方法:培养学生运用知识进行分析、推理等思维能力。

  情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

  教学重点:

  掌握按比例分配应用题的结构特点和解题思路。

  教学难点:

  正确分析解答按比例分配应用题。

  教法:

  启发引导法,演示法学法:观察比较,合作交流。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习解决下面各题化简

  27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。

  二、情景导入学生自由讨论

  1。一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?

  2。我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。

  三、新授新知教学例2

  (1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?

  (2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)

  (3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的`稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)

  (4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)

  水的体积:500×4=400(ml)

  答:稀释液100ml,水400ml。

  这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。

  师:把我们学过的比转化成分率,怎样来做?

  生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5。可以写成:浓缩液的体积:500×1/5=100(ml)

  水的体积:500×4/5=400(ml)

  答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)

  做一做第1、2题,学生独立完成,抽生板演,集体讲评。

  四、全课总结

  今天我们学到了什么?

  五、家庭作业

  教材第50页,练习十二1—3题。

  教学反思:

  本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。

  比的应用教学设计 篇10

  教学内容:

  冀教版小学数学六年级上册第二单元《比的应用》。

  教学目标:

  1、知识方面:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。

  2、能力方面:培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力,培养学生合作学习及归纳、总结、概括的能力。

  3、情感方面:创设民主和谐的学习氛围,在关注培养学生自主探索意识、灵活思维品质过程中形成积极的学习情感,让学生学会评价自我,欣赏他人。

  教学重点:

  掌握按比分配应用题的结构特点和解题思路。

  教学难点:

  正确分析,灵活解决按比分配的实际问题。

  教具准备:

  课件

  学习过程:

  一、创设情境。

  (1)3月12号是植树节学校把种植88棵小树苗的任务分给六年级的每位同学,怎样分配才合理?(平均分配)

  (2)李明和黄华合办了股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

  (在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。)

  二、自主学习,合作探究,

  1、出示题目:幼儿园大班30个人,小班20个人,把这些橘子分给大班和小班,怎样分比较合理?

  请同学们想一想:你认为怎样分合理?说一说你的分法?

  2、出示题目:这筐橘子按3:2该怎样分?

  自学提示:

  (1)可列表或画图。

  (2)联系比与分数的关系,将本题转化成相关的分数应用题。

  (3)你还有其它的什么想法,用你的方法试试吧!

  3、小组合作。

  4、各小组汇报自己的分法。

  5、解题思路:

  (1)明确分什么?有多少?怎样分?

  (2)计算总份数。

  (3)根据具体数量与对应分数的'关系解题。

  师:解决生活中的实际问题的时候,同学们要认真分析数量关系,可以选择多种方法解答。

  三、达标检测。

  1、填空。

  (1)把60根小棒按2:3的比分成两堆,一堆有()根,另一堆有()根。

  (2)把60根小棒按1:1的比分成两堆,一堆有()根,另一堆有()根。

  2、实际应用。

  (1)六年级三班要举行联欢会,班委决定要买12千克水果,据调查,爱吃苹果的同学和爱吃梨的同学的人数比是2:1,请你算一算,苹果和梨各买多少千克?

  (2)用2份水泥、3份沙子和5份石子配制成一种混凝土。配制4吨这种混凝土,需要水泥、沙子、石子各多少吨?

  3、拓展延伸。

  把刚开始上课时老师留下的第二道题完成。

  四、回顾整理,反思提升

  学生说说自己这节课的收获。

  五、课堂作业:

  课后练一练的1题、2题、3题。

【比的应用教学设计】相关文章:

比例尺的应用教学设计11-01

比的应用的教学反思04-20

《比的应用》教学反思01-18

《应用》教学反思02-11

应用教学反思02-10

比的应用教学反思03-26

《比例的应用》教学反思04-09

比的应用数学教学反思03-24

透镜及其应用教学反思04-15