首页 > 教案大全 > 数学教案 正文
六年级数学下册《圆锥的体积》教案万能模板

2023-09-27 17:26:37 21好文网 数学教案

六年级数学下册《圆锥的体积》教案

  作为一位优秀的人民教师,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。如何把教案做到重点突出呢?下面是小编为大家收集的六年级数学下册《圆锥的体积》教案,希望能够帮助到大家。

六年级数学下册《圆锥的体积》教案1

  【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  【教学重点】

  圆锥体体积计算公式的推导过程.

  【教学难点】

  正确理解圆锥体积计算公式.

  【教学步骤】

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的体积是和它等底等高圆柱体积的1/3

  V=1/3Sh

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的'底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

六年级数学下册《圆锥的体积》教案2

  教学内容

  教科书第40~41页例2,练习九第3~7题。

  1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。

  2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。

  3.在探究问题中,发展学生的空间观念。

  运用圆锥体积的计算方法解决生活中的问题。

  灵活运用圆锥的体积计算公式解决问题。

  小黑板

  一、复习引入课题

  教师:怎样计算圆锥的体积?

  学生回答,教师板书体积公式:V=13SH

  教师:谁能说说圆锥的体积计算公式是怎么推导出来的?

  抽学生简要叙述圆锥的推导过程。

  教师:要求圆锥的体积,应该知道哪些条件?

  让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。

  教师:这节课我们就利用圆锥体积的`计算方法解决生活和学习中常见的数学问题。

  板书课题:圆锥的体积二

  二、探究新知

  1.教学例2

  教师用投影仪出示例2。

  一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)

  教师要求学生带着问题理解题意。用投影仪出示问题。

  (1)这道题讲的是什么事情?知道哪些条件?要求什么问题?

  (2)要求这堆煤的质量,必须先求什么?

  (3)要求煤的体积应该怎么办?

  (4)这题应先求什么?再求什么?最后求什么?

  教师鼓励学生独立思考,教师适时点拨。

  反馈:要求学生用完整的语言叙述题意。

  教师抽学生叙述思考过程,要求语言简洁,思路清晰。

  在反馈过程中,尽量多抽几个学生叙述。

  通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。

  教师抽学生上台板算。

  板书:

  煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)

  煤堆的体积:13×28.26×1.8=16.956(M3)

  1.4×16.956÷5≈5(辆)答:……

  教师:最后的结果为什么要取整数部分再加1?

  让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。

  教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?

  2.小结

  要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。

  三、巩固练习

  1.教师用投影仪出示教科书第42页第3题

  观察图形,独立解答。抽二生上台板算。

  让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。

  2.解答教科书第42页第4题

  学生独立解答,抽生反馈说出思考过程。

  通过这一题的练习,体会圆锥与圆柱之间的关系。

  3.解答练习九第6题

  学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体积不变进行解答。

  4.发展练习

  有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?

  教师引导学生读题,理解题意。

  弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。

  学生小组内交流,探讨解决方案。

  反馈:学生用完整清晰的语言叙述解题思路。

  弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问题时,应有序思考,灵活运用知识。

  例2……

  煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)

  煤堆的体积:13×28.26×1.8=16.956(M3)

  1.4×16.956÷5≈5(辆)答:

六年级数学下册《圆锥的体积》教案3

  教学内容:

  教材第11~17页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:

  长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1. 说出圆柱的体积计算公式。

  2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的.圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积13=底面积高13

  用字母表示:V= 13 Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

六年级数学下册《圆锥的体积》教案4

  教学内容:第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:掌握圆锥体积的计算公式。

  教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

  教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

  (2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

  (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )还可以怎么说?

  板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh

  拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

  强调:“等底等高”。

  问:Sh表示什么?为什么要乘1/3?

  练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

  一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

  2、教学练习四第3题

  (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

  (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  说明:不要漏乘1/3,计算时能约分的要先约分。

  3、巩固练习:完成练习四第4题。

  4、教学例3.

  (1)出示例3

  已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  三、巩固练习

  1、做练习四的第7题。

  学生先独立判断这三句话是否正确,然后全般核对评讲。

  2、做练习四的第8题。

  (1)引导学生学生思考回答以下问题:

  ① 这道题已知什么?求什么?

  ② 求圆锥的体积必须知道什么?

  ③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  (2)让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习四的`第6题。

  (1)指名学生先后回答下面问题:

  ① 圆柱的侧面积等于多少?

  ② 圆柱的表面积的含义是什么?怎样计算?

  ③ 圆柱体积的计算公式是什么?

  ④ 圆锥的体积公式是什么?

  (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

  四、总结

  这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

  第七课时教学反思

  课件演示

  俗话说“眼见为实”,所以相对于课件演示而言,教师在全班演示会更直观,结论也更具信服性。

  俗话又说“纸上得来终觉浅,绝知此事要躬行”,所以相对于看教师演示与自己亲自动手实验,亲身经历探究印象会更深刻。

  课堂如果以4——6人小组为单位进行实验,全班至少得有9套以上教具。可我校现有教具数量不够。如果要求学生课前自制教具,他们暂时无法制作出与圆柱等底等高高的圆锥。所以只好改为教师演示,学生观察。

  仅用一次实验就得出结论是不严谨的,所以课堂上必须让学生历经多次不同实验后才能得到正确结论。根据学校现有教具,今天我准备了两套不同大小的等底等高圆柱、圆锥作为器材。在实验中,我不仅让学生清晰地看到将圆锥内的水倒3次可以注满与它等底等高的圆柱,同时,还让他们看到圆柱内的水再反倒回等底等高的圆锥时要倒3次。不仅自己示范演示,也让学生参与演示实验。最后,我还用不等底等高的圆柱与圆锥做实验,强调实验结果只有在“等底等高”的条件下才能成立。因为实验环节落实较好,全班作业正确率高。

六年级数学下册《圆锥的体积》教案5

  教学目标

  1.理解求圆锥体积的计算公式。

  2.会运用公式计算圆锥的体积。

  3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。

  教学重点

  圆锥体体积计算公式的推导过程。

  教学难点

  正确理解圆锥体积计算公式。

  教学过程

  一、铺垫孕伏

  1.提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

  2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的'体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式

  1.教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2.学生分组实验。

  学生汇报实验结果:

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

  4.引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 。

  板书:

  5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 。

  6.思考:要求圆锥的体积,必须知道哪两个条件?

  7.反馈练习

  圆锥的底面积是5,高是3,体积是( )。

  圆锥的底面积是10,高是9,体积是( )。

  (二)算一算

  学生独立计算,集体订正。

  说说解题方法。

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

六年级数学下册《圆锥的体积》教案6

  一、学习内容:

  教师提供 小学数学六年级下册14页----17页。

  二、学生提供:

  等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

  三、学习目标:

  1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

  2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

  四、重点难点:

  重点:圆锥的体积计算。

  难点圆锥的体积公式推导。

  关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。

  五、学习准备:

  等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

  看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

  长方形的长等于三角形的.底,长方形的宽等于三角形的高。

  你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?

  三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

  六、布置课前预习

  点拨自学

  1、圆柱和圆锥有哪些相同的地方?

  2、圆柱和圆锥有哪些不同的地方?

  3、圆锥的体积和圆柱的体积有什么关系呢?

  请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。

  七、交流解惑:

  它们的底面积相等,高也相等

  圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……

  动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

  通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流

  组际解疑

  老师点拨

  八、合作考试

  1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

  2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底

  面半径约3分米,高约2.7分米,求沙堆的体积。

  (只列式不计算)

  3、在打谷场上,有一个近似于圆锥的小麦堆,测

  底面直径是4米,高是1.2米。每立方米小麦约

  重735千克,这堆小麦大约有多少千克?

  (只列式不计算)

  4、如图,求这枝大笔的体积。

  (单位:厘米)

  (只列式不计算)

  5、将一个底面半径是2分米,高是4分米的圆柱

  形木块,削成一个最大的圆锥,那么削去的体积

  是多少立方分米?(口算)

  九、自我总结:

  通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。

  十、教学反思:

  本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

六年级数学下册《圆锥的体积》教案7

  圆锥的体积

  教学内容:教科书第42~~43页的例1、例2,完成“做一做”和练习九的第3—5题。

  教学目的:使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

  教具准备:等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土(最好让学生也准备).

  教学过程:

  一、复习

  1、圆锥有什么特征?

  使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、导人新课

  我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  学生:3次。

  教师:这说明了什么?

  学生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  板书:圆锥的体积=1/3×圆柱体积

  教师:圆柱的体积等于什么?

  学生:等于“底面积×高”。

  教师:那么,圆锥的体积可以怎样表示呢?

  引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积=1/3×底面积×高

  教师:用字母应该怎样表示?

  然后板书字母公式:v=1/3sh

  2、教学例1。

  一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  教师:这道题已知什么?求什么?

  指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算?

  引导学生对照圆锥体积的`计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  3、做第50页“做一做”的第1题。

  让学生独立做在练习本上,教师行间巡视。

  做完后集体订正。

  4、教学例2。

  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  教师:这道题已知什么?求什么?

  学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。

  教师:要求小麦的重量,必须先求出什么?

  学生:必须先求出这堆小麦的体积。

  教师:要求这堆小麦的体积又该怎么办?

  学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。

  教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。?

  学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。

  教师:求得小麦的体积后。应该怎样求小麦的重量?

  学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。

  分析完后,指定两名学生板演。其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过量才能确定,735千克并不是一个固定的常数

  (2)组织学生讨论,怎样测量小麦堆的底面直径和高?

  讨论后。先让学生说出自己的想法。然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围上一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿。将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。

  5、做“做一做”的第2题。

  教师:这道题应该先求什么?

  学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。

  做完后集体订正。

  四、小结(略)

  五、课堂练习

  1、做练习九的第3题。

  指定3名学生在黑板上板演,其余学生做在练习本上。

  集体订正时。让学生说一说自己的计算方法。

  2,做练习九的第4题。

  教师可以让学生回答以下问题:

  (1)这道题已知什么?求什么?

  (2)求圆锥的体积必须知道什么?

  (3)求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  然后让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习九的第5题。

  教师指名学生先后回答下面问题:

  (1)圆柱的侧面积等于多少?

  (2)圆柱的表面积的含义是什么?怎样计算?

  (3)圆柱体积的计算公式是什么?

  (4)圆锥的体积公式是什么?

  然后,让学生把计算结果填写在教科书第51页的表格中。做完后集体订正。

六年级数学下册《圆锥的体积》教案8

  教学目标

  1.在操作和探究中理解并掌握圆锥的体积计算公式。

  2.引导学生探究、发现,培养学生的观察、归纳等能力。

  3.在实验中,培养学生的数学兴趣,发展学生的空间观念。

  教学重点

  圆锥体积的计算公式的推导过程。

  教学难点

  圆锥体积计算公式的理解。

  教学过程

  一、情景铺垫,引入课题

  教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16 cm2,高60 cm,单价:40元/个。

  出示问题:到底选哪种蛋糕划算呢?

  教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?

  学生明白首先要求出圆锥形蛋糕的体积。

  教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。

  揭示课题。板书课题:圆锥的体积

  二、自主探究,感悟新知

  1.提出猜想,大胆质疑

  教师:谁来猜猜圆锥的体积怎么算?

  2.分组合作,动手实验

  教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。

  教师布置任务并提出要求。

  每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。

  学生小组合作探究,教师巡视指导,参与学生的活动。

  3.教师用展示实验报告单

  教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?

  方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=1/3×圆柱的体积。

  方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。

  教师:二个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。

  教师把学生们的实验过程演示一遍,让学生再经历一次圆锥体积的探究过程。

  4.公式推导

  教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?

  教师引导学生理解只要求出与这个圆锥等底等高的圆柱的'体积,再乘以三分之一,就得到圆锥的体积。

  板书:圆柱的体积=底面积×高

  V=S×h

  ↓〖4↓〖6↓

  圆锥的体积=1/3×底面积×高

  V=1/3×S×h

  教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?

  抽学生回答,教师板书:V=1/3Sh

  教师引导学生理解公式,弄清公式中的S表示什么,h表示什么。

  要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。

  5.运用所学知识解决问题

  教学例1。

  一个铅锤高6 cm,底面半径4 cm。这个铅锤的体积是多少立方厘米?

  学生读题,找出题中的条件和问题。

  引导学生弄清铅锤的形状是圆锥形。

  学生独立解答。抽学生上台展示解答情况并说出思考过程。

  三、拓展应用,巩固新知

  1.教科书第42页第1题

  学生独立解答,集体订正。

  2.填一填

  (1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。

  (2)等底等高的圆柱的体积是圆锥体积的()倍。

  抽生回答,熟悉圆锥的体积计算公式。

  3.把下列表格补充完整

  形状 底面积S(m2) 高h(m) 体积V(m3)

  圆锥 15 9

  圆柱 16 0.6

  学生在解答时,教师巡视指导。

  4.教科书第42页练习九第2题

  分组解答,抽生板算。教师带领学生集体订正。

  5.应用公式解决实际问题

  教师:现在我们再来帮助这两个同学解决他们的难题。

  要求学生独立解答新课前买蛋糕的问题。

  抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。

  四、课堂总结

  教师:这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?

六年级数学下册《圆锥的体积》教案9

  设计说明

  《数学课程标准》指出:“学生学习应当是一个生动活泼的、主动且富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。”根据六年级学生基本都有较强的实验操作能力和空间想象能力这一特点,在教学圆锥体积计算公式的推导时,一改以前教师演示或在教师指令下做试验的方式,采取给学生提供材料和机会,引导学生自主探究的学习方式进行教学。具体表现在以下几个方面:

  1.注意激发学生的求知欲。

  上课伊始,通过精心设计的问题引发学生深入思考,激发学生的学习兴趣。在推导公式的过程中,通过引导学生探讨试验方法,使学生的学习兴趣保持高涨。在解决问题时,通过“扶”而不是“包办代替”,使学生在自主分析问题、解决问题中,真实感受到成功的喜悦。

  2.注意以学生为学习活动的主体。

  教学中,为学生提供动脑、动手的空间,使学生充分参与获取知识的全过程,在分组观察、实验操作、测量等基础上,自主推导出圆锥的体积计算公式。

  3.在学习过程中教给学生科学的'探究方法。

  “提出问题——直觉猜想——试验探究——合作交流——试验验证——得出结论——实践运用”是探究学习的一个基本方法,教学中,为学生搭建探究学习的平台,促使学生在这样的过程中掌握知识,获得广泛的数学活动经验和思想方法,发展学生的反思意识和自我评价意识。同时,课堂中,启发学生提问、猜想、动手实践,培养学生解决问题的能力。

  课前准备

  教师准备 PPT课件 铅锤

  学生准备 等底、等高的圆柱形容器和圆锥形容器 沙子或水

  教学过程

  ⊙问题导入

  1.提问激趣。

  师:怎样计算这个铅锤的体积?(出示铅锤)

  预设

  生:可以用“排水法”。把铅锤放入盛水的量杯中(水未溢出),根据水面的先后变化求出铅锤的体积。

  师:怎样求出沙堆的体积?(课件出示例3沙堆图)

  预设

  生1:用“排水法”好像不行。

  生2:把圆锥形沙堆改变形状,堆成正方体,测出它的棱长后计算它的体积。

  生3:把圆锥形沙堆改变形状,堆成长方体,测出它的长、宽、高后计算它的体积。

  生4:把圆锥形沙堆改变形状,堆成圆柱,测出它的底面周长和高,求出它的底面积后计算它的体积。

  2.导入新知。

  师:大家都想到了用“转化”的方法求这堆沙子的体积,但如果我们在计算沙堆体积之前,必须把沙子重新堆放成以前学过的几何形体,这样做又麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。(板书课题:圆锥的体积)

  设计意图:通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

  ⊙探究新知

  1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?

  (学生大胆猜想,可能与圆柱的体积有关)

  2.探究圆锥的体积要借助一个什么样的圆柱来研究这一问题呢?

  学生经过讨论、交流并说出观点:应该选择一个与这个圆锥等底、等高的圆柱更为合适。

  3.课件出示等底、等高的圆柱和圆锥。

  引导学生想一想它们的体积之间会有什么样的关系。

  4.方法指导。

  议一议:怎样借助等底、等高的圆柱和圆锥来探究圆柱和圆锥的体积之间的关系呢?

  (各组同学准备好等底、等高的圆柱、圆锥形容器)

  预设

  生1:把圆柱形容器装满水,再倒入圆锥形容器中,看可以正好装满几个圆锥形容器。

  生2:把圆锥形容器装满沙子,再倒入圆柱形容器中,看正好几次可以倒满。

  生3:选用一组等底、等高的圆柱模型和圆锥模型,先用“排水法”分别求出圆柱和圆锥的体积,再算出圆柱体积是圆锥体积的几倍,并发现两者之间的关系。

  5.操作交流。

  (1)分组试验。

  请同学们分组试验。(学生试验,教师巡视指导)

  (2)交流、汇报。

  师:谁能汇报一下自己小组的试验结果?

  预设

  生:在圆柱和圆锥的底面积相等、高相等的情况下,将圆锥形容器装满沙子向圆柱形容器里倒,倒了3次,正好倒满。

  师:通过试验,你发现等底、等高的圆柱和圆锥的体积之间有什么关系?

  预设

  生1:圆锥的体积是与它等底、等高的圆柱的体积的。

  生2:圆柱的体积是与它等底、等高的圆锥的体积的3倍。

  6.推导公式。

  师:结合自己的试验结果,说一说计算圆锥的体积时需要知道什么条件。

  预设

  生1:需要知道与圆锥等底、等高的圆柱的体积是多少。

  生2:知道圆锥的底面积和高也可以求出圆锥的体积。

  师:你认为圆锥的体积计算公式是什么?

六年级数学下册《圆锥的体积》教案10

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

  (二)核心能力

  在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

  (三)学习目标

  1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

  2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

  (四)学习重点

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  (五)学习难点

  圆锥体积公式的推导

  (六)配套资源

  实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

  二、教学设计

  (一)课前设计

  1.复习任务

  (1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

  (2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

  设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

  (二)课堂设计

  1.情境导入

  (出示沙堆)

  师:你们有办法知道这个沙堆的体积吗?

  学生自由发言,提出各种办法。

  预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

  师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

  设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

  2.问题探究

  (1)观察猜想

  师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

  学生自由发言。

  (圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

  师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

  学生猜想。

  (2)操作验证

  师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

  实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

  实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

  1号圆锥2号圆锥3号圆锥

  次数

  与圆柱是否等底等高

  学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

  (3)交流汇报

  ①汇报实验结果

  各组汇报实验结果。

  ②分析数据

  师:观察全班实验的数据,你能发现什么?

  (大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

  师:什么情况下,圆柱刚好能装下三个圆锥的水?

  各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

  师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

  老师用标准教具装沙土再演示一次,加以验证。

  ③归纳小结

  师:谁能来总结一下,通过实验我们得到的结果是什么?

  (4)公式推导

  师:你能把上面的试验结果用式子表示吗?(学生尝试)

  老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  圆锥的体积=×圆柱的体积

  =×底面积×高

  S=sh

  师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

  考查目标1、2

  (5)实践应用

  师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)

  师:要求沙堆的体积需要已知哪些条件?

  (由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  学生试做后交流汇报。

  已知圆锥的底面直径和高,可以直接利用公式

  V=π()h来求圆锥的体积。

  师:在计算过程中我们要注意什么?为什么?

  注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

  3.巩固练习

  (1)填空。

  ①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

  ②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。

  ③圆锥的底面积是3.1m2,高是9m,体积是()m。

  (2)判断,并说明理由。

  ①圆锥的体积等于圆柱体积的。()

  ②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

  (3)课本第34页的做一做。

  ①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的.体积是多少?

  ②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)

  4.课堂总结

  师:这节课你收获了什么?和大家分享一下吧!

  圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

  (三)课时作业

  1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

  =235.5×30

  =7065(立方厘米)

  答:雕成的圆锥的体积是7065立方厘米。

  解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

  2.看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

  解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

  ①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

  ②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

  ③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

  以上三种情况计算并加以比较,得出结论。考查目标1、2

六年级数学下册《圆锥的体积》教案11

  教学内容:

  冀教版小学数学六年级下册第40~42页。

  教学目标:

  1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

  2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

  3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

  教学重点:

  了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

  教学难点:

  理解圆锥的高和圆锥体积公式中Sh表示的实际意义。

  教具学具:

  1、等底等高的圆柱和圆锥型容器,一些沙子。

  2、多媒体课件。

  教学流程:

  一、炫我两分钟

  主持学生指名叫学生回答下列问题

  1.圆柱有几个面?各有什么特点?

  2.怎样计算圆柱的体积?

  学生回答问题。

  【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的.相关知识,在轻松愉快的氛围中自然引入本节所学知识。】

  二、创设情境

  1.教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

  2.出示问题情境

  最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)

  【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】

  三、探究新知

  尝试小研究一(课前):了解圆锥的特点

  1.观察圆锥形的物体或图片,它们有哪些特点?

  我的发现

  2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。

  3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。

六年级数学下册《圆锥的体积》教案12

  教学目标:

  1、渗透转化思想,培养学生的自主探索意识。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学准备:主题图、圆柱形物体

  教学过程:

  一、复习:

  1、长方体的体积公式是什么?

  (长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课:

  1、圆柱体积计算公式的推导:

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  (课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的'底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  (长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题:

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?

  (计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

  4、教学例6:

  (1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?

  (相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)

  三、巩固练习:

  1、做第26页的第1题:

  2、练习五的第2题:

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、全课总结:

【六年级数学下册《圆锥的体积》教案】相关文章:

数学教案-圆锥的体积09-29

六年级下册数学《圆锥的体积》教案09-30

人教版六年级下册数学《圆锥的体积》教案03-12

小学六年级数学下册《圆锥的体积》教案09-09

圆锥的体积教案02-24

圆锥的体积教案12-17

圆锥的体积-教案12-17

人教版六年级下册数学《圆锥的体积》教案3篇03-12

圆锥的体积09-29