首页 > 教案大全 > 数学教案 正文
第一册等差数列范文模板

2023-09-27 17:31:33 21好文网 数学教案

第一册等差数列

教学目标 <?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /> 中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1. 等差数列的概念;

2. 等差数列的通项公式

教学难点

等差数列“等差”特点的`理解、把握和应用

教学方法

启发式数学

教具准备

投影片1张(内容见下面)

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列① (1≤n≤6); (2≤n≤6)

对于数列② -2n(n≥1)

(n≥2)

对于数列③ (n≥1)

(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:

即:

即:

……

由此可得:

师:看来,若已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项

如数列① (1≤n≤6)

数列②: (n≥1)

数列③: (n≥1)

由上述关系还可得:

即:

则: =

如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由

n=20,得

(2)由

得数列通项公式为:

由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

(n≥2)

②等差数列通项公式 (n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.2 1,2

二、1.预习内容:课本P116例2—P117例4

2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

板书设计

课题

一、定义

1.

(n≥2)

一、通项公式

2.

公式推导过程

例题

教学后记

【第一册等差数列】相关文章:

等差数列08-02

数学教案-等差数列08-02

等差数列的教学设计08-02

上学期 3.2等差数列08-02

等差数列的前n项和08-02

数学教案-§3.2.1 等差数列08-02

数学等差数列教案(精选10篇)04-16

说课—《等差数列前n项和的公式》08-02

数学教案-等差数列的前n项和08-02