六年级下册数学教案【精】
作为一位杰出的老师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编精心整理的六年级下册数学教案,仅供参考,希望能够帮助到大家。
六年级下册数学教案1
教学内容:
P702– 75
教学目标:
1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;
2、培养学生仔细审题,认真思考,探索规律的良好习惯。
教学重难点:
理解正比例的意义和性质。
教学过程:
一、复习引入:
我们已学了一些常见的数量关系,谁能来说一说:
1、路程、速度、时间;
2、单价、数量、总量;
3、工作效率、工作时间、工作总量;
……
二、先观察、后概括:
1、例1:一列火车行驶的时间和路如下表:
时间(小时) | 1 | 2 | 3 | 4 | 5 | 6 | …… |
路程(千米) | 60 | 120 | 180 | 240 | 300 | 360 | …… |
观察上表,回答下列问题:
⑴、表中有哪两个量是相关联的?
⑵、路程是怎样随着行车时间的变化而变化的?
⑶、相对应的路程和时间的比分别是多少?比值是多少?
从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。
写成关系式是:=速度(一定)
2、新改例2:一种铅笔,支数与总价如下表:
支数) | 1 | 2 | 3 | 4 | 5 | 6 | …… |
总价(元) | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | …… |
由上表可以发现什么特征?
(哪几个量是相关联的?这两个相关联的量之间有什么关系?)
写成关系式是:=单价(一定)
比较例1、例2,它们有什么共同点?
概括:
⑴、两种相关联的.量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。
⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:
= K(一定)
(结合例1、例2说一说)
3、练一练P75
三、巩固练习:
1、 P76看后判断,并连起来说一说。
2、 P76 – 2先观察,再分析。
3、 P76 – 3
四、小结:
要判断两个量是否成正比例,依据什么来判断?
1、两个相联的量?
2、一个量随着另一个量的变化而变化,并且它们的比值一定。
五、作业:
P76 3 4
六年级下册数学教案2
教学内容:
六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨:-15 ℃~-3 北京: -5 ℃~5 ℃ 深圳: 12 ℃~23 ℃ 温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的.下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放): “中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数并且规定用红色算筹表
示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
《认识负数》教学反思
六年级下册的第一堂数学课就是《认识负数》,对于学生来说是一个全新的概念,但又不是一无所知,可能在平时的生活中见过或听过。因此在备课时从教材出发,又和生活联系起来,设计了一个让学生熟悉而又觉得有趣味的教学过程。
一、从生活实际出发,引出课题
课的开始从“剪子包袱锤”的游戏入手,通过游戏让学生感受到相反的意思,为学好负数的意义做好铺垫。学生玩得很开心,在玩的过程中,学生首先建立一个表示相反意义的量的意识。接下来,她又设计了让学生根据信息记录相反意思的量,从而引出了负数的意义,并要求学生读、写负数,让学生感受到正数、负数都有无数个,就有了负数的集合,这样抓住了负数与过去所学的数之间的联系,感受了数的发展。
二、交流信息,使学生感到负数在生活中的广泛应用
在学生已经认识负数之后,利用温度计,使学生进一步理解0与正负数之间的关系,紧接着又列举了生活中的一些实例:坐电梯到地下的楼层应按哪个数字键?冰箱里的鱼、水中的鱼、刚烧熟的鱼该与哪个温度相连?海平面是怎么回事?高山和地面的高度如何测量,又如何表示?东、西方向的数轴是怎么回事?这部分内容的安排通过借助生活实例让学生对负数有了更深一层的了解,并在解决这些问题的同时,使学生感知负数在生活中的广泛应用,为学生解决生活中的问题奠定了基础。
三、巧妙利用时机,对学生进行爱国主义教育。
在小学数学教学中有机渗透德育教育,也是新课标倡导的理念之一,这节课上,在对学生进行负数产生史介绍时,让学生感受到了中国人民的勤劳与智慧,增加学生作为一个中国人的自豪感。在课的最后,胡老师安排了刘翔跑步中的风速问题,既让学生感受到可以利用负数的知识,解决生
六年级下册数学教案3
教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。
教学过程:
一、创设情境,教学比例的基本知识。
1、复习:
师:什么叫比例?下面每组中的两个比能否组成比例?出示:
1/3∶1/4和12∶9 1∶5和0.8∶4 7∶4和5∶3 80∶2和200∶5
学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5
2、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3 :5 = 18 :30 学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3 :5 = 18 :30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
师:刚才,你们是根据比例的意义先求出比值再作出判断的'。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。
二、教学例4
1、提问:你能根据图中的数据写出比例吗?
(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
2、学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
3、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组):
1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5
学生验证。
⑵学生任意写一个比例并验证。
教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交*连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交*相乘,结果相等。
师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。
引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。
师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。
板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。
⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。
(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
读书P44页,勾画
5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
6、比例的基本性质的应用
(1)比例的基本性质有什么应用?
(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。
A、先假设这两个比能组成比例
:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
C、根据比例的基本性质判断组成的比例是否正确。
三、综合练习:
1、完成练一练
(1)学生尝试练习。
(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在( )里填上合适的数。
1.5:3=( ):4
12:( )=( ):5
先让学生尝试填写,再交流明确思考方法。
3、补充一组灵活训练题:
A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?
B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。
C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?
四、全课小结:
同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。
能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?
五、课堂作业。
1、做练习十第1、3题
2、独立完成2、4题
板书设计:
比例的基本性质
3 :5 = 18 :30
内项
外项
6:4=3:2 4:6=2:3 4:2=6:3 3:6=2:4
3×4=6×2
a:b=c:d ad=bc
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
六年级下册数学教案4
:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。
甲乙两数的比是5:3。乙数是60,甲数是( )。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26页2、3题
综合练习
1、 A×1/6=B×1/5 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
板书设计: 整理和复习
比例的意义
比例 比例的性质
解比例
正反比例 正方比例的.意义
正反比例的判断方法
比例应用题 正比例应用题
反比例应用体题
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
六年级下册数学教案5
教学目标知识目标:
理解比例的意义,认识比例各部分的名称。
能力目标:
能运用比例的意义判断两个比能否组成比例,并会组比例。
情感目标:
感受数学的奥秘,培养数学兴趣。
教学重、难点教学
重点:理解比例的意义。
教学难点:能根据比例的意义写比例.
突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。
教学媒体多媒体课件、小黑板
教学活动及主要语言预设学生活动预设
一、创境激疑
上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。
回顾
产生疑问
二、互动解疑
1、比例的意义
在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。
(1)写出每个图片的长与宽的比
(2)求出各比的比值
(3)观察特点,写出规律
板书:
图片A:6:4=3:2=1.5
图片B:3:2=1.5
图片C:8:3=2.66……
图片D:12:8=3:2=1.5
图片E:12:2=6
比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。
结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。
巩固练习:
(1)要求每个学生写出一个比例,教师巡视指导且批阅。
(2)要求每个学生写出一个比例,同桌交流。
(3)做一做教材表格的题,完成后由教师批改。
2、认识比例各部分名称
组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。
在比例中,两端的两项叫做比例的外项,中间的'两项叫做比例的内项。
例如:12:6=8:4中12和4是比例6和8是比例
观察
先独立思考
指名汇报
共同发现、小结
理解
自主思考
小组内交流探究
汇报交流
独立填写
同桌交流
指名汇报
三、启思导疑
1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)
2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)
指名谈发现
理解
识记
四、实践运用
(一)填一填。
1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。
2、用6,3,9,8组成一个比例是( )。
(二)下列那几组的两个比可以组成比例?为什么?
(1)4:5和8:20
(2)15:30和18:36
(3)0.7:4.9和140:20
(4)1/3:1/9和1/6:1/8
(三)按要求写一写。
1、先写出比值是3的两个比,再组成比例。
2、根据1.2×25=0.6×25写出两个比例式。
独立思考
指名汇报
评价订正
五、总结评价
这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?
自由小结
板书设计:比例的认识
12:6 = 8:4
6:4 = 3:2
六年级下册数学教案6
教学要求:
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
教学重点:认识解比例的意义。
教学难点:应用比例的基本性质解比例。
教学过程:
一、复习引新
1.做第32页复习题。
出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。
2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
4:3=2:1.5=x:4=1:2
提问;根据积相等的式子,你能求出最后一题里的x吗?
3.引入新课。
在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。
二、教学新课
1、教学例2。
出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
2、教学例3。
出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3、教学“试一试”。
提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。
4、小结方法。
提问:你认为根据比例的基本性质要怎样解比例?
三、巩固练习
1、做“练一练”。
指名四人板演。其余学生分两组,每组两道题,做在练习本上。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第l0题。
学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。
4、做练习六第11题。
学生口答、老师板书,看能写出多少个比例。
四、讲解思考题
提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的`积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例,
六、布置作业
课堂作业:练习六第6题第(1)~(4)题,第7题。
家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
六年级下册数学教案7
第一课时
教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。
教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
一、复习
我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的.,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?
谁能说一说我们学习了长方体和正方体的哪些知识?
二、 新授
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、 初步印象
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)
2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、 交流和汇报
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、 举例说明进一步明确特征
六年级下册数学教案8
第一单元负数
第一课时负数
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①、我在银行存入了500元(取出了500元)。
②、知识竞赛中,五(1)班得了20分(扣了20分)。
③、10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。
3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄式度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。
上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。
了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①、上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②、北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)、交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐
鲁番盆地的海拔可以记作:-155米。(板书)
(2)、小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①、如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②、如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表
示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)、存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)、电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我
们都可以用正数和负数来表示。
七、布置作业
《冠魔新干线》第1页的练习。
第二课时负数
教学内容:比较正数和负数的大小。
教学目的:
知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的`密切联系,激发学生学习数学的兴趣。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?15-85.6+0.9-+0-82832、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是____摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)、提问你能在一条直线上表示他们运动后的情况吗?
(2)、让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)、教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)、学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)、总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)、引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5
处,应如何运动?
(7)、练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)、在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)、负数比0小,正数比0大,负数比正数小。
五、布置作业
《冠魔新干线》第2页的练习。
第三课时
内容:认识负数练习
1、先读一读下面这些温度,在写下来。
汽油蒸发的温度是四十摄氏度。()
汽油凝固的温度是十八摄氏度。()
金星表面的最高温度是四百六十五摄氏度。()
2、先读一读,再把这些数放入相应的框内。
正数:()
负数:()
六年级下册数学教案9
教学目标:
1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、培养学生猜想与验证、观察与概括的能力。
4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。
教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
教学难点:自主探究比例的基本性质。
教学准备:投影片、练习纸
教案设计:
学案
一、自学质疑
[探究任务一]比例的意义
投影出示几组比,让学生写出各组的比值
二、比例的基本性质
教案。
一、回顾旧知、孕伏新知
1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?
(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?
2、师板书题目:
(1)4:5 20:25(2)0、6:0、3 1、8:0、9
(3)1/4:5/8 3:7、5(4)3:8 9:27
[评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]
二、丝丝入扣,深挖比例的意义
(一)认识意义
1、指名口答每组中两个比的比值,在比例下方写上比值。
师问:你们有什么发现吗?(三组比值相等,一组不等)
2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25
师:最后一组能用等号连接吗?为什么?
数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)
[评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]
3、同学们想研究比例的哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
板演:表示两个比相等的式子叫做比例。
学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
5、质疑:有三个比,他们的比值相等,能组成比例吗?
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的快乐!]
(二)练习
1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第1题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
(1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
(2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、认识比例各部分的名称。
(1)板书出示:4:5
前项后项
(2)板书出示:4:5 = 20:25
内项外项
(3)如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:4/5=20/25
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?
三、探究比例的基本性质
1、投影出示:
你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)
2、独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3
或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答,师相机引导并板书:3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5……
3、引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证猜想:
师:这是你的猜想,有了猜想还必须验证。
(1)请看黑板上这几个比例的内项的积与外项的积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)
(2)学生任意写一个比例并验证。师巡视指导。
师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?
板书:1/2 ∶1/8 = 2∶ 8
众生沉思片刻,纷纷发现等式不成立。
生:1/2∶1/8 = 4,而2∶8 =1/4,这两个比不能组成比例。
师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
[及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的'信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]
四、反馈提升
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14:21和6:9 1、4:2和5:10
让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。
3、判断下面哪一个比能与1/5:4组成比例。
①5:4 ②20:1
③1:20 ④5:1/4
4、在()里填上合适的数。
①1、5:3=():4
12:()=():5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、课后留白
同一时间、同一地点,人高1、5米,影长2米;树高3米,影长4米。
(1)人高和影长的比是()
树高和影长的比是()
(2)人高和树高的比是()
人影长和树影长的比是()
你有什么发现?
为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。
[设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]
六、全课总结:这节课你有什么收获?
(最后的机会仍然给学生,学生通过清晰的板书总结的很到位)
六年级下册数学教案10
全册教材分析
教学内容:
理解百分数的意义,体会百分数与分数、小数的联系和区别,在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;初步认识众数与中位数的意义。
教学目标:
知识与技能目标
1.让学生经历应用百分数的知识解决生活中一些常见问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关问题的能力;在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。
2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。
3.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;结合实例,初步认识众数与中位数的意义,会求一组简单数据的众数和中位数,初步体会众数、中位数和平均数等不同统计量的不同特点。
4.让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问题中数量关系、空间形式和数据信息理解,提高综合应用数学知识和方法能力。
数学思考方面
1.让学生在应用百分数解决相关问题的过程中,进一步培养分析、综合和简单推理的能力,提高用方程表示数量关系的能力,发展抽象思维,增强数感。
2.让学生在认识圆柱和圆锥特征的过程中,丰富对现实空间的感知,进一步增强空间
观念;在推导圆柱和圆锥的体积公式以及探索圆柱侧面积和表面积的计算方法的过程中,经历观察、猜想、实验、分析、验证和概括等活动,进一步培养合情推理与初步的演绎推理能力,发展形象思维。
3.让学生在认识图形的放大和缩小、探索并理解比例的意义和性质,以及理解比例尺的意义和应用比例尺解决问题的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题意识和能力。
4.让学生在根据方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理地继续表达的能力,不断增强空间观念。
5.让学生在探索并理解成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
6.让学生在认识扇形统计图以及众数、中位数的过程中,进一步感受数据的意义和价值,感受不同统计量的联系和区别,发展统计观念。
7.让学生在系统复习的过程中,进一步体会知识间的联系和综合,加深对基本数学原理和方法的理解,培养比较、分析、综合、概括的能力,发展思维的整体性、灵活性和深刻性。
解决问题方面
1.让学生联系已有的知识和生活经验发现并提出一些数学问题,并主动用百分数、方程、正比例和反比例、圆柱和圆锥的体积公式、圆柱侧面积和表面积的计算方法、图形的放大和缩小、比例尺等数学知识和方法解决问题,进一步发展数学应用意识。
2.让学生在解决有关百分数、圆柱和圆锥体积计算、圆柱侧面积和表面积计算等实际问题的过程中,感受借助计算器解决问题的价值,进一步掌握分析和解决问题的基本方法,体会解决问题方法飞多样性。
3.让学生能用比例、比例尺、正比例和反比例等知识解决简单实际问题的过程中,体会数形结合的思想对于解决问题的价值,进一步积累和丰富解决问题的有效策略。
4.让学生在用方向和距离描述物体的位置,用扇形统计图和相关统计量解释数据信息、解答简单问题的过程中,进一步体会合作交流的`重要性,提高合作交流的能力。
5.让学生在用转化的策略解决简单实际问题的过程中,进一步增强解决问题的策略意识和反思意识,培养根据所需解决问题的特点合理选择相应策略的自觉性和能力。
6、让学生在系统复习的过程中,进一步提高综合应用数学知识和方法解释日常生活现象、解释简单实际问题的水平,进一步用不同方式、从不同角度探索解决问题方法的能力,发展创新意识和实践能力。
情感态度方面
1.进一步感受数学思考的确定性和数学结论的严谨性,获得一些成功的体验,锻炼克服困难的意志。
2.进一步培养认真细心的学习习惯,培养发现错误及时订正的良好习惯。
3.进一步感受数学价值,感受数学与生活的密切联系,不断增强学数学、用数学的自觉性。
4.进一步了解有关数学知识的背景,体会数学的广泛应用,培养实事求是的科学态度和对社会的责任感。
5.进一步感受自己在数学知识和方法等方面的收获与进步,发展对数学的积极情感,进一步增强学好数学的信心。
教学重、难点
教学重点:百分数的应用、圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。
教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的灵活运用。
全册课时安排:全册共安排72课时的教学内容,其中30课时的总复习。
百分数的应用 11课时圆柱和圆锥11课时 比例7课时 确定位置4课时 正比例和反比例 4课时 解决问题的策略2课时 统计3课时 总复习 30课时
第一单元 百分数的应用
教学内容:
六年级(上册)“认识百分数”这个单元里,初步教学百分数的意义,用百分数描述部分与整体或两个同类数量间的倍数关系;教学了百分数与分数、小数的相互改写,解决简单的求一个数是另一个数的百分之几的问题。本单元在此基础上编排,通过应用百分数解决实际问题,进一步理解百分数的意义,体会百分数的广泛应用。
日常生活和生产劳动经常应用百分数,如用百分数表示一个数量比另一个数量多或少的关系,又如利息与纳税的计算、折扣的设计与计算等。应用百分数解决问题可以列式计算,也可以列方程解答。这些都是本单元的教学内容。
全单元的教学内容比较多,编排6道例题、四个练习以及全单元的整理与练习,大致分成五段教学。
例1、练习一,求一个数比另一个数多百分之几(或少百分之几)。这一段是接着六年级(上册)求简单的百分率编排的。
例2、例3、练习二,根据国家规定的税率和利率,计算应纳税金额和可得利息金额。这一段应用百分数的乘法解决实际问题。
例4、练习三,解决有关折扣的问题,包括设计折扣和根据折扣求现价或原价的问题。这一段里有列方程解题,也有列算式解题,列方程求原价是重点。
例5、例6练习四,列方程解决稍复杂的百分数问题或分数问题。在六年级(上册)“分数四则混合运算”里只教学稍复杂的求一个数的百分之几是多少的问题,已知一个数的百分之几是多少,求这个数的问题安排在本单元,由百分数问题带出。
“整理与练习”综合全单元的知识内容,进一步应用百分数解决实际问题。 教学目标:
1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。
2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。
3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。
课时安排:百分数的应用 11课时
求一个数比另一个数多(少)百分之几的实际问题 2课时
纳税问题 1课时
利息问题 1课时
打折问题 2课时
列方程解决稍复杂的百分数应用题3课时
整理与练习 2课时
六年级下册数学教案11
教学目标:
1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学准备:多媒体课件。
教学过程:
一、展示目标,引入本课。
二、探究新知,意义建构
1、看一看
下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)
2、说一说
(1)比例尺1:100表示什么意思呢?
生:图上1厘米长的线段表示实际距离100厘米。
(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。
(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。
3、议一议
(1)什么是比例尺呢?
图上距离和实际距离的比,叫做比例尺。
(2)比例尺怎样表示呢?
比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)
(3)比例尺有什么特征呢?
①比例尺与一般的`尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。
【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。
三、拓展延伸,巩固新知
1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?
70:3.5=700:35=20:1
答:这幅设计图纸的比例尺是20:1。
2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)
3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?
32×6000000=192000000(厘米)192000000厘米=1920(千米)
答:广州到北京实际距离是1920千米。
五、总结新课,整理知识
通过今天的学习,你有什么收获呢?
板书设计:比例尺
比例尺=图上距离:实际距离
实际距离=图上距离×1厘米表示的实际距离
图上距离=实际距离÷1厘米表示的实际距离
六年级下册数学教案12
学习目标:
1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的.图形。
2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。
学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。
学习难点:在方格纸上画出线段旋转90度后的图形
课前准备:钟表,课件,教具
学习过程
环节学案
回顾旧知
1、物体的运动有( )和( )。
2、平移和旋转都只改变图形的( ),不改变图形的( )和( )。
自主探索
1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。
2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。
3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。
4、旋转三要素指( )( )( )。
合作探究
当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。
达标检测
基础性作业:
课本29页练一练1、2题(看课件)。
一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。
提高性作业:
1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。
拓展性作业:
如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N
六年级下册数学教案13
教学内容:
课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。
教学目标:
1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
3、培养和解决简单的实际问题的能力,体会生活中处处有数学。
教学重点:
掌握百分数在实际生活中的应用。
教学难点:
渗透生活即数学的教学思想。
课前准备:
课件
教学过程:
一、认识、了解纳税
教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。
二、教学新课
1、教学例7。
出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?
指名学生读题后全班学生再次读题。
提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?
学生尝试练习。
学生可能有下面两种方法:
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
集体订正,教师板书算式。说说这题你是根据什么来列式的`?
强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额
2、做“试一试”。
提问:这道题先求什么?再求什么?
生:先求5000元的20%是多少?再求实际获得的奖金。
学生板演与齐练同时进行,集体订正。
3、完成练一练后全班交流。
三、反馈练习
只列式不计算。
1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?
2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?
3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?
四、课堂总结
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
五、布置作业
练习十六第1—3题。
六年级下册数学教案14
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
教学内容:
苏教版义务教育课程标准实验教科书第60-61页
教材分析:
在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。
在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。
教学目标:
⑴使学生会用工具测量两点间的距离、步测和目测的方法。
⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。
⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。
教学重点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学难点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学具准备:
卷尺、标杆、50米跑道。
教学流程:
一、揭示课题,明确学习内容。
⑴揭示课题。
板书课题——实际测量。让学生说说对课题的理解。
⑵了解测量工具。
让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。
⑶明确学习内容。
测量地面上相隔较远的两点间的距离;步测和目测。
二、了解测量知识,为实践活动作准备。
⑴测量相隔较远的两点间的距离。
理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的.精确程度。
理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;
观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)
掌握测定直线的步骤:测定直线;分段量出;记录计算。
⑵学习步测的方法。
理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。
掌握步测的方法:用步数×每一步的距离。
理解步测的关键:确定平均步长。
掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。
理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。
⑶学习目测的方法。
观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。
目测较短距离:人书本的长和宽;课桌的长和宽等等;
理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。
三、实践活动。
⑴测定直线。
⑵确定平均步长。
⑶步测篮球场的长和宽。
⑷目测教学楼的长度。
第三单元分数除法
第10课时按比例分配的实际问题
教学内容:
课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
理解按比例分配实际问题的意义,掌握解题的关键。
课前准备:
课件
教学过程:
一、创设情境、引入新知
根据信息填空:
(1)男生有31人,女生有21人,男生人数是女生人数的。
(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?
师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。
二、探究新知
1、出示例11中的实物图及例题。
(1)让学生阅读题目后说说你知道哪些信息?
(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:
①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;
②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。
③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。
师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。
学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?
说说你是怎样做的?
方法一:3+2=530÷5×330÷5×2
方法二:30×3/530×2/5
2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?
说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)
如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)
3、完成练一练第1题。
4、完成试一试。
出示试一试。
提问:“按各小组人数的比分配”是什么意思?你想到了什么?
5、归纳(讨论)。
(1)比较例题与试一试题目在解答方法上有什么共同特点?
(2)怎么解答?
求总份数,各部分量占总数量的几分之几,最后求各部分量。
(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)
三、应用比的知识解决实际问题
1、练一练第2题。
独立完成后进行交流
指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?
2、练一练第3题。
独立填表,完成后集体核对。
3、练习十第1题。
四、课堂总结
这节课学过以后,你有什么收获?
五、布置作业:
练习十第2、3题。
教学反思:
教学过程:
(一)导引探究,由表及里
教学例1,认识成正比例的量。
1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。
时间(时)123456……路程(千米)80160240320400480……
在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)
2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。
3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。
4.让学生根据板书完整地说一说表中路程和时间成什么关系。
[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]
(二)自主探究,尝试归纳
出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?
速度(千米/时)406080100120……时间(时)3020151210……
1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?
2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。
3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。
[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]
(三)对比探究,把握本质规律
1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。
多媒体呈现:
例1路程/时间=速度(一定)
路程和时间成正比例
例2速度×时间;路程(一定)
速度和时间成反比例
2.探究活动。
(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。
(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。
[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]
(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。
启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?
根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。
[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]
3.组织对比性练习。
(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:
表1
数量/本2030405060……总价/元3045607590……
表2
单价/元1。52456……数量/本4030151210……
在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!
在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。
[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]
(2)成比例与不成比例的对比练习。
下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?
①圆的直径和周长。
②小麦每公顷产量一定,小麦的公顷数和总产量。
③书的总页数一定,已经看的页数和未看的页数。
[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]
(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。
[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。
六年级下册数学教案15
教学目标:
通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。
通过例2的复习进一步掌握求稍复杂的平均数问题的方法。
通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。
教学过程:
复均数。
出示例1
问:要求七个班的平均人数,该怎样算?让学生自己算出结果。
想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。
通过计算让学生总结出求平均数问题的计算方法。
出示例2
学生想:要求五年级平均每人做多少个,必须先求出( )和( )
让学生自己列式解答。
让学生总结求较复杂平均数问题的计算方法。
完成137页的“做一做”
复习统计表
出示137页的例题。
让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。
完成138页的“做一做”
第二课时
复习统计图
教学目标:
通过复习让学生归纳整理折线统计图、条形统计图和扇区形统计图的特点和作用。进一步加深理解它们各自的特点,初步了解在什么情况下用什么统计图反映情况较为合适。
教学过程:
复习
回答
你学过哪几种统计图?
出示某电子仪器一厂和二厂在三个方面的统计图。
回答四个问题
从折线统计图中可以看出,哪个厂的产值增长和快?
从条形统计图中可以看出,哪个厂的工人人数多?哪个厂的技术人员多?
从扇形统计图中可以看出,哪个厂的.外销产品占销售总数的百分比大?
综合上面的分析,你认为哪个厂的生产搞得好?为什么?
引导学生把三种统计图的特点和作用进行概括和总结。
让学生看书或出示140页三种统计图的特点和作用表。