数学五年级上册教案模板
在教学工作者实际的教学活动中,时常需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编整理的数学五年级上册教案模板,欢迎阅读与收藏。
数学五年级上册教案模板1
试一试
1、采蘑菇的小姑娘,她采了6个蘑菇,这6个蘑菇可以怎么样摆放?找出6的因数。
2、小姑娘昨天采了21个,今天采了30个,你能找出21和30 的因数吗?
(自己试着找一找,并说一说自己所用的`方法。)
3、你能试着找出21和30公共的因数吗?你是怎样找的?
三、巩固练习(练一练)
1、小狗吃骨头,看看每只小狗该吃哪块骨头?
2、试着找一找32的所有因数。并说一说,你是怎么找的?
四、总结。
这节课你学会了什么呢?指名学生说一说,教师归纳。
五、作业。
1、练一练第1、2、5题
2、优化作业
数学五年级上册教案模板2
第一课时
教学目标
1、让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的位置。
2、使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
3、渗透“数形结合”的思想,发展学生的空间观念。
教学重点:经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点:灵活运用数对知识解决实际问题。
教学过程:
一、创设情境,生成问题
谈话:今天老师和同学们一起走进军营,参观战士们的军营生活,高兴吗?(播放:走进军营,出示情境图)看,战士们正在进行队列训练呢,这一位是班长小强。
.你能提出什么问题?引出问题:小强在什么位置?(指名学生回答)
.问:为什么同一个人的位置,同学们的说法不一样呢?
.结合学生回答情况进行小结:刚才同学们在描述小强的位置时,有的横着看,有的竖着数,有的……由于看法和角度不同,产生了不同的说法,数学是交流的工具啊!标准不一样给我们的交流带来不方便,你想不想探讨一些简单又统一的方法来确定位置?这节课我们就来研究——确定位置(板书课题)
二、探索交流,解决问题
(一)、在情境图中确定位置
1.认识行与列
谈话(同步演示):平时我们所说的“竖排”,通常叫做“列”,习惯上我们从观察者的'左边数第1列、第2列……,平时我们所说的“横排”,叫做“行”,通常从前往后数,第1行、第2行……。
问:现在你能用第几列第几行来说说张亮的位置吗?(演示)王艳和赵雪的位置怎么说?想好了,说给同位听。
指名同学说小亮和小明的位置,教师板书
2.认识数对
谈话:刚才这位同学很快说出了小亮和小明的位置,老师写的速度却很慢,什么原因?
数学的一大特点是简练,大家能不能想个更简单的方法来确定位置,记起来简单,还能让别人一看就知道是第几列第几行?现在以小强的位置为例在本子上写一写,试一试吧。
学生独立思考并写出想法,然后小组交流。
全班交流。引导学生对全班交流的意见进行梳理小结:这些同学都用数和符号简洁的表现出了小强的位置,真了不起!
介绍数对的写法:数学家也是用2个数来表示一个地点或者人的位置,如:第3列第2行,先写3,中间用逗号隔开,再写2,外面再加一个小括号。象这样的一对数,就是数对(板书),读作:三二。前边的3 表示第三列,后面的2表示第2行。用数对可以准确而简练地表示出物体的位置。
请你用数对表示小亮和小明的位置,写下来。(2名学生板演)
3.抽象圆点图,加深对数对含义的认识。
三.巩固应用,内化提高
用数对表示位置很简单,看这个队列图,我们也能把它变得很简单。现在我们把每个人的位置看作一个点,整个队列就变成了这样一副图。
四、回顾整理,反思提升
这节课你有什么收获?
第二课时
教学目标:
1、在具体的情境中,探索确定物体位置的方法,能用数对表示物体的位置。
2、使学生能在方格纸上用数对确定位置。
3、能灵活运用到日常生活中,解决实际问题。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学过程:
一、创设情境,生成问题
我们全班有53名同学,但大部分的同学班主任王老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、探索交流,交流问题
新授
1、教学例2
(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?/2、
学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)/4、
小结例2:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
学生根据书上所给的数据,在图上标出“飞禽馆”“大象馆”“海洋馆”“猴山”的位置。
三、巩固应用,内化提高
学生独立找出图中的字母所在的位置,指名回答。
四、回顾整理,反思提升
我们今天学了哪些内容?你觉得自己掌握的情况如何?
数学五年级上册教案模板3
一、教学目标
1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。
2、结合具体情境,进一步体会整数与部分的关系。
二、重点难点
重点:理解整体1,体会一个分数对应的整体不同,所表示的具体数量也不相同。
难点:充分体会整数与部分的关系。
三、教学过程
(一)复习旧知,导入新课
1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗?说说它们分别表示什么意义?
2、今天我们一起来学习《分数的再认识》。
(二)创设情境,学习新知
活动一:分笔游戏,体会单位一
1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)
2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。
3、另找4名同学检查。
4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)
5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)
6、师总结:最初每位同学笔的'整体不同,也就是单位1不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识?
活动二:教材P34说一说。
1、带着新的认识,我们来判断两个小朋友看的书一样多吗?
2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)
4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)
5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:我俩吃的一样多。李晓阳说:我吃得比你多。他们谁说得对呢?
(三)巩固练习
1、教材P34画一画。
2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
四、板书设计
分数的再认识
整体不同,相同分数表示的数量也不同。
整体相同,相同分数表示的数量也相同。
五、教学反思
本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了平均分和体会整数与部分的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如印度洋海啸捐款一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。
数学五年级上册教案模板4
教学内容:P10例6、做一做,P13练习二第1—3题。
教学目的:
1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程:
一、激发:
1、口算。
1.2×0.3 0.7×0.5 0.21×0.8 1.8×0.5
1-0.82 1.3+0.74 1.25×8 0.25×0.4
0.4×0.4 0.89×1 0.11×0.6 80×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数 保留一位小数 保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍, 所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正,说一说是怎样算的。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的`小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。
6、专项练习(根据下面算式填空)
3.4×0.91=3.094积保留一位小数是( ),保留两位小数是( )。
7、尝试后练习:
▲P10页做一做1.计算下面各题。
0.8×0.9(得数保留一位小数) 1.7×0.45(得数保留两位小数)
▲判断,并改错。
10.286×0.32=3.29(保留两位小数)
3.27×1.5=4.95 1.78×0.45≈0.80(保留两位小数)
1 0 .2 8 6 3 . 2 7 2 . 0 4
× 0. 3 2 × 1. 5 × 2 8
2 0 5 7 2 1 6 3 5 1 6 3 2
3 0 8 5 8 3 2 7 4 0 8
3. 2 9 1 5 2 4. 9 0 5 5 7 1 2
三、运用
1、一千克白菜的价钱是6。78元,妈妈买了0。8千克,应付多少题?
虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。
2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?
3.059 3.578 3.574 3.583 3.585
四、体验:谁来小结一下今天所学的内容?
五、作业:P8第1题。
课后小记:
补充的一道生活中购物的题体现了数学在生活中的应用,但全班仅一人主动保留了结果,这反映出数学与生活脱离的现象及待解决与完善。但这题在现实生活中到底是应该保留几位小数呢?学生保留的是一位,而我建议他们保留两位,哪种更合理?更符合生活实际?
数学五年级上册教案模板5
教学内容:
课本9~10页上的内容。
教学目标:
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。帮助学生掌握找一个数的全部因数的方法。
2、在1100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。
3、通过练习,进一步巩固这种方法,并能运用这种方法解决一些实际的问题。
教学重点:
学会找一个数的因数的方法。
教学难点:
在1100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。
教具准备:
课件、12个同样的`小正方形纸板。
教学过程:
一、揭示课题。
教师:这一节课,老师要和同学们一起去找一种数,找什么数呢?是找因数。
板书课题:找因数。
教师:你知道什么是因数?
二、组织活动,探索新知。
活动一:拼一拼
1、用12个小正方形拼成一个长方形,有哪几中拼法?
2、在下面的方格内画一画。
(自己试着独立画一画,看看你有几种画法,画完后与你的同学进行交流。)
3、根据学生的回答,教师进行板书。
汇报交流自己的画法
12=112 12=26 12=34
所以可以拼成三种长方形。
4、小结:1、2、3、4、6和12是12的全部因数。
数学五年级上册教案模板6
教学目标
1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养学生大胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的.解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270(50+40).
想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:
相遇时间=路程速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于求相遇时间应用题还有什么问题?
4.教师提问
(1)要求相遇时间题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,
第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这
列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
数学五年级上册教案模板7
教学目标:
1、知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题
2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重点:
理解并掌握三角形面积的计算公式
教学难点:
理解三角形面积计算公式的推导过程
考点分析:
能根据具体情况应用三角形面积公式解决实际问题
教学方法:
创设情境——新知讲授——巩固总结——练习提高
教学用具:
多媒体课件、三角形学具
教学过程:
一、创设情境
师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的?
生:三角形的
师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。
板书:三角形的面积
二、新知探究
1、课件出示一个平行四边形
师:平行四边形的面积怎么计算?
生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)
师:平行四边形的面积公式是怎样得到的?
生说推导过程
师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢?
生1:我想把它转化成已学过的图形。
生2:我想看看三角形能不能转化成长方形或平行和四边形。
2、动手实验
师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的'计算公式。
生小组合作,教师巡视指导。
3、展示成果,推导公式
师:同学们经过猜想,验证,已经推导出了三角形面积的计算公式。请展示给大家看。
生展示
汇报一:两个完全一样的锐角三角形拼成的平行四边形。
汇报二:两个完全一样的钝角三角形拼成的平行四边形
汇报三:两个完全一样的直角三角形拼成的平行四边形
除此之外,两个完全一样的直角三角形还可以拼成三角形
三角形的面积=长方形的面积(平行四边形)÷2
=长×宽÷2
=底×高÷2
4、例题讲解
红领巾底是100cm,高33 cm,它的面积是多少平方厘米?
三、巩固提升
1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?(单位:厘米)
2、指出下面三角形的底和高,并口算出它们的面积。 (单位:厘米)
3、上图是一个平行四边形,看图填空
平行四边形的面积是12平方厘米,三角形ABC的面积是( )平方厘米。
4 、思考题你能在图中再画出与涂颜色的三角形的面积相等的三角形吗?
四、 总结结课
1、学生总结
这节课你学习了什么?你有什么收获?(小组说--组内总结--组间交流)
2、教师总结
今天我们一起探索了三角形的面积计算公式,并能应用于实际问题的解决中。
板书设计:
三角形的面积
平行四边形的面积=底×高
三角形的面积=长方形的面积÷2
=长×宽÷2
=平行四边形的面积÷2
=底×高÷2
数学五年级上册教案模板8
平均数的初步认识
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的.投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20__年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结
数学五年级上册教案模板9
第三课时:除数是整数的小数除法的验算
2.一个数除以小数
2.练习课
3.求商的近似值
5.用计算器探索规律
教学目标
1.知识与技能:让学生利用计算器独立探索,发现规律,再用观察来完成各题的商。
2.过程与方法:用先独立发现后小组交流的方式进行教学。
3.情感、态度与价值观:让学生通过观察、对比、分析、发现规律,体验成功的喜悦。
教学重点:运用计算器计算,发现算式的规律。
教学难点:运用规律直接写出商。
教学过程
一、复习
1.什么叫循环小数?请举3个例子。
2.小数分为几类?(有限小数和无限小数)
二、新授课
1.教学教科书第29页的例题10.
(1)出示例题10: 1÷11
2÷11
3÷11
4÷11
5÷11
先让学生用计算器算出1÷11,则计算器上显示0.090909091.由于1÷11的结果是一个循环小数,所以0.090909091是一个近似数,而这道题采用的是符号,所以我们要把近似数还原为循环小数:0.0909。
1÷11=0.0909
2÷11=0.1818
3÷11=0.2727
4÷11=0.3636
5÷11=0.4545
(2)观察:以4人为一小组讨论,这五道题的结果有什么特点?
分析:
1÷11的循环节是09
2÷11的循环节是18
3÷11的'循环节是27
4÷11的循环节是36
发现:除数不变,被除数扩大2倍,循环节也扩大2倍,被除数扩大3倍,循环节也扩大3倍
(3)根据上面的规律,直接写出下面几题的商。
6÷11=0.5454
7÷11=0.6363
8÷11=0.7272
9÷11=0.8181
2.完成教科书第29页的“做一做”。
(1)学生先用计算器算出前4题的结果。
3×7=21
3.3×7=22.11
3.33×7=222.111
3.333×7=2222.1111
(2)观察:第一个式子中,两个因数的位数和是多少?积的位数是多少?积是由那两个数字组成的?积的小数在哪里?
再用同样的方法观察第三式和第四式。
(3)根据前几题的规律,得出后两题的结果。
3.3333×6666.7=22222.111111
3.33333×66666.7=222222.1111111
数学五年级上册教案模板10
教学目标:
1.在实际情境中,认识计算梯形面积的必要性。 2.在自主探索活动中,经历推导梯形面积公式的过程。 3.能运用梯形面积的计算公式,解决相应的实际问题。
教学重点:理解并掌握梯形面积的计算公式。
教学难点:理解梯形面积计算公式的推导过程。教具准备:各种梯形各两份,剪刀,课件。
教学过程:
一、揭示课题,明确主题
1.生活中我们能找到许多平面图形,这个教室里有吗?
2.请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书2.梯形,四年级的时候我们已经认识它了,谁来介绍一下它。
3.今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)
二、回忆旧知,建立联系
1.面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)
2.回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?
3.同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式.这种思想,这节课我们也要用到。
三、转化梯形,推导公式
(一)应用的需要引出猜想
1.同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。
2.但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
3.同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:(1)想想能把梯形转化成学过的什么图形。
(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。
(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!
(二)小组活动十分钟
(三)汇报
1.刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?
2.师:同学们,观察这些图形,无论长方形还是正方形,都是……。再看,(移动图形)你发现什么了?过渡:看来,只要是两个完全相同的梯形,就能拼成一个…….(板书)平行四边形的面积我们学过:……(板书)然后我们就可以根据两种图形间的联系来推导梯形的`面积了。谁来帮老师梳理一下。平行四边形的底就是梯形的……….,平形四边形的高就是……,所以梯形的面积……为什么除以2?
3.刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?
4.总结:同学们真爱动脑筋,想出了这么多不同的方法。但这些方法都有共同点。谁来说说?
5.是不是这样啊?那大家就一起把我们用“转化”的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?
6.在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。四、加深理解,巩固新知。
1. 总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。
2.这个方法你们记住了吗?那老师可要考考你了!(判断题)
3.通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。
4.梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?
5.梯形面积的计算方法在生活中还有更广泛的应用,小到…..大到…..都会用到它。
五、结语
转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。